Forecasting Methods Master in MQDEE

Jorge Caiado
CEMAPRE/ISEG, University of Lisbon
Email: jcaiado@iseg.ulisboa.pt
Web: http://icaiado100.wixsite.com/iorgecaiado

Introduction to Forecasting Methods Time Series Analysis

Definition of time series

A time series is a sequence of observations over time. For example: monthly sales of new one-family houses; Daily stock indices; Weekly beer consumption; daily average temperature; Annual electricity production.

Time Series Analysis

PASSAG

PASSAG by Season

Linear trend model

A common feature of time series data is a trend. We can model and forecast the trend in a time series data using the following regression model (called "linear trend model"):

$$
Y_{t}=b_{0}+b_{1} t+\varepsilon_{t}
$$

where $t=1,2, \ldots, T$ (time) is the explanatory or predictor variable.

Time Series Analysis

Example Figure below shows the estimated regression line of money stock M2 on time T (data from 1959:Q1 to 1995:Q4 in the US)

Time Series Analysis

Log-linear trend model

Suppose we want to find out the growth rate of consumption $\left(Y_{t}\right)$ in Portugal from 2000Q1 to 2017Q3. Let Y_{0} be the initial value of the consumption (i.e, the value in the end of 1999Q4).

We may use the following compound interest formula

$$
Y_{t}=Y_{0}(1+r)^{t}
$$

where r is the compound rate of growth of Y. Taking the natural logarithm, we can write

$$
\log Y_{t}=\log Y_{0}+t \log (1+r)
$$

Now letting $b_{0}=\log Y_{0}$ and $b_{1}=\log (1+r)$, we can write it as

$$
\log Y_{t}=b_{0}+b_{1} t
$$

Adding the disturbance term we obtain the so-called log-linear trend model:

$$
\log Y_{t}=b_{0}+b_{1} t+\varepsilon_{t}
$$

Time Series Analysis

LISBON
SCHOOL OF
ECONOMICS \&
MANAGEMENT
UNIVERSIDADE DE LISBOA

How to interpret this model?
Dependent Variable: LOG(CONS)
Method: Least Squares
Date: 07/21/18 Time: 11:54
Sample: 2000Q1 2017Q3
Included observations: 71

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	11.35948	0.014669	774.3708	0.0000
@TREND+1	0.005709	0.000354	16.12160	0.0000
R-squared	0.790214	Mean dependent var	11.56500	
Adjusted R-squared	0.787173	S.D. dependent var	0.132554	
S.E. of regression	0.061151	Akaike info criterion	-2.723172	
Sum squared resid	0.258023	Schwarz criterion	-2.659434	
Log likelihood	98.67260	Hannan-Quinn criter.	-2.697825	
F-statistic	259.9059	Durbin-Watson stat	0.019370	
Prob(F-statistic)	0.000000			

Time Series Analysis

Time series decomposition

We can think of a time series as containing four components: trend (T), cycle (C), seasonality (S) and noise or error (E).

For example, we may assume an additive model as follows:

$$
Y_{t}=T_{t}+C_{t}+S_{t}+E_{t}
$$

or

$$
Y_{t}=T C_{t}+S_{t}+E_{t}
$$

Alternatively, we can write a multiplicative model as

$$
Y_{t}=T_{t} \times C_{t} \times S_{t} \times E_{t}
$$

or

$$
Y_{t}=T C_{t} \times S_{t} \times E_{t}
$$

The additive model is most appropriate if the magnitude of the seasonal fluctuations or the variation around the trend-cycle does not vary with the level of the time series.

Time Series Analysis

Decomposition of additive time series

Time Series Analysis

Decomposition of multiplicative time series

Time Series Analysis

Seasonal Adjustment

Some economic time series observed at quarterly, monthly, weekly frequencies often exhibit cyclical seasonal movements that occur every quarter, month or week. For example, the monthly inflation rate in Angola reach a peak every December during Christmas period.

Seasonal adjustment \square remove the cyclical seasonal movements from a series.
Moving average methods:

- Additive decomposition
- Multiplicative decomposition

The seasonal period is denoted by s (e.g., $s=4$ for quarterly data, $s=12$ for monthly data, $s=7$ for daily data with a weekly pattern)

Time Series Analysis

Multiplicative decomposition: $Y_{t}=T C_{t} \times S_{t} \times E_{t}$
Step1: Compute the trend-cycle component using a centered moving average as

$$
\widehat{T C}_{t}=\left(0.5 Y_{t-6}+\cdots+Y_{t}+\cdots+0.5 Y_{t+6}\right) / 12 \text { if } s=12 \text { (monthly) }
$$

or

$$
\widehat{T C}_{t}=\left(0.5 Y_{t-2}+Y_{t-1}+Y_{t}+Y_{t+1}+0.5 Y_{t+2}\right) / 4 \text { if } s=4 \text { (quarterly) }
$$

Step 2: Calculate the detrended series: $Y_{t} / \widehat{T C}_{t}$
Step 3: Estimate the seasonal components for each month or quarter, averaging the detrended values for that month or quarter. Then adjust the seasonal indices so that they add to s :

$$
\hat{S}_{m}=i_{m} / \sqrt[12]{i_{1} i_{2} \cdots i_{12}} \text { if } s=12 \text { (monthly) }
$$

or

$$
\hat{S}_{q}=i_{q} / \sqrt[12]{i_{1} i_{2} i_{3} i_{4}} \text { if } s=4 \text { (quarterly) }
$$

Time Series Analysis

Step 4: The seasonally adjusted series is obtained by dividing Y_{t} by the seasonal factors S_{j}. This gives $Y_{t}^{S A}$.

Step 5: The remainder component is calculated by dividing out the estimated seasonal and trend-cycle components: $\hat{E}_{t}=Y_{t} /\left(\widehat{T C}_{t} \times \hat{S}_{t}\right)$

Example 17.1. Figure below shows the result of multiplicative decomposition the wine consumption in Australia from January 1980 to July 1995.

Time Series Analysis

EVIEWS: Proc/Seasonal Adjustment/Moving average methods/Ratio to moving average

Date: 07/21/18 Time: 19:15 Sample: 1980M01 1995M07
Included observations: 187
Ratio to Moving Average
Original Series: WINE
Adjusted Series: WINESA
Scaling Factors:

1	0.545133
2	0.735193
3	0.882675
4	0.963865
5	1.087376
6	1.122619
7	1.396486
8	1.365222
9	1.078535
10	0.973587
11	1.063142
12	1.128828

Time Series Analysis

LISBON
SCHOOL OF
ECONOMICS \& MANAGEMENT

UNIVERSIDADE DE LISBOA

Time Series Analysis

Additive decomposition $Y_{t}=T C_{t}+S_{t}+E_{t}$
Step1: Compute the trend-cycle component using a centered moving average as

$$
\widehat{T C}_{t}=\left(0.5 Y_{t-6}+\cdots+Y_{t}+\cdots+0.5 Y_{t+6}\right) / 12 \text { if } s=12 \text { (monthly) }
$$

or

$$
\widehat{T C}_{t}=\left(0.5 Y_{t-2}+Y_{t-1}+Y_{t}+Y_{t+1}+0.5 Y_{t+2}\right) / 4 \text { if } s=4 \text { (quarterly) }
$$

Step 2: Calculate the detrended series: $Y_{t}-\widehat{T C}_{t}$
Step 3: Estimate the seasonal components for each month or quarter, averaging the detrended values for that month or quarter. Then adjust the seasonal indices so that they add up to zero:

$$
\hat{S}_{m}=i_{m}-\left(i_{1}+i_{2}+\cdots+i_{12}\right) / 12 \text { if } s=12 \text { (monthly) }
$$

or

$$
\hat{S}_{q}=i_{q}-\left(i_{1}+i_{2}+i_{3}+i_{4}\right) / 4 \text { if } s=4 \text { (quarterly) }
$$

Time Series Analysis

Step 4: The seasonally adjusted series is obtained by subtracting Y_{t} by the seasonal factors S_{j}. This gives $Y_{t}^{S A}$.

Step 5: The remainder component is calculated by subtracting the estimated seasonal and trend-cycle components: $\widehat{E}_{t}=Y_{t}-\widehat{T C}_{t}-\hat{S}_{t}$

Other seasonal adjustment procedures: X12 ARIMA, STL and TRAMO/SEATS

Time Series Analysis

LISBON
SCHOOL OF
ECONOMICS \& MANAGEMENT
universidade de lisboa
Example: The data below represent the monthly sales of houses in Ohio (US) from January 1987 to November July 1994 (EViews file: dataforecasting.wk1; page=house)

Plot the time series. Are there any seasonal fluctuations? Use additive decomposition to estimate the trend-cycle, seasonal indices and error component.

Date	Sales	Date	Sales	Date	Sales	Date	Sales
1987M01	53	1989M01	52	1991M01	30	1993M01	44
1987M02	59	1989M02	51	1991M02	40	1993M02	50
1987M03	73	1989M03	58	1991M03	46	1993M03	60
1987M04	72	1989M04	60	1991M04	46	1993M04	66
1987M05	62	1989M05	61	1991M05	47	1993M05	58
1987M06	58	1989M06	58	1991M06	47	1993M06	59
1987M07	55	1989M07	62	1991M07	43	1993M07	55
1987M08	56	1989M08	61	1991M08	46	1993M08	57
1987M09	52	1989M09	49	1991M09	37	1993M09	57
1987M10	52	1989M10	51	1991M10	41	1993M10	56
1987M11	43	1989M11	47	1991M11	39	1993M11	53
1987M12	37	1989M12	40	1991M12	36	1993M12	51
1988M01	43	1990M01	45	1992M01	48	1994M01	45
1988M02	55	1990M02	50	1992M02	55	1994M02	58
1988M03	68	1990M03	58	1992M03	56	1994M03	74
1988M04	68	1990M04	52	1992M04	53	1994M04	65
1988M05	64	1990M05	50	1992M05	52	1994M05	65
1988M06	65	1990M06	50	1992M06	53	1994M06	55
1988M07	57	1990M07	46	1992M07	52	1994M07	52
1988M08	59	1990M08	46	1992M08	56	1994M08	59
1988M09	54	1990M09	38	1992M09	51	1994M09	54
1988M10	57	1990M10	37	1992M10	48	1994M10	57
1988M11	43	1990M11	34	1992M11	42	1994M11	45
1988M12	42	1990M12	29	1992M12	42		

Time Series Analysis

Forecast Evaluation

Suppose the forecast sample is $T+1, T+2, \ldots, T+k$ and denote the actual value in period t as Y_{t} and the forecasted value as \hat{Y}_{t}.

The three most commonly used forecast accuracy measures are:

$$
\begin{gathered}
R M S E=(1 / k) \sum_{t=T+1}^{T+k}\left(Y_{t}-\hat{Y}_{t}\right)^{2} \text { (Root Mean Squared Error) } \\
M A E=1 / k) \sum_{t=T+1}^{T+k}\left|Y_{t}-\hat{Y}_{t}\right| \text { (Mean Absolute Error) } \\
M A P E=1 / k) \sum_{t=T+1}^{T+k}\left|\frac{Y_{t}-\hat{Y}_{t}}{Y_{t}}\right| \times 100 \text { (Mean Absolute Percentual Error) }
\end{gathered}
$$

Time Series Analysis

Exponential Smoothing

Exponential smoothing methods compute forecasts as weighted averages of past observations, with the weights decaying exponentially as the observation get older.

Single smoothing

The single exponential method is appropriate for forecasting series with no trend or seasonal pattern.

Forecast at time $t+1: \hat{Y}_{t+1}=\alpha Y_{t}+(1-\alpha) \hat{Y}_{t}$, where $0 \leq \alpha \leq 1$ is the damping or smoothing parameter.

By repeated substitutions, we obtain

$$
\hat{Y}_{t+1}=\sum_{j=0}^{T-1} \alpha(1-\alpha)^{j} Y_{t-j}
$$

The forecast equation of single exponential method is given by:

$$
\hat{Y}_{T+k}=\hat{Y}_{T} \text { for all } k>0
$$

Time Series Analysis

LISBON
SCHOOL OF
ECONOMICS \& MANAGEMENT
UNIVERSIDADE DE LISBOA
Initialization: We may use $\hat{Y}_{2}=Y_{1}$ or the mean of the initial observations of Y_{t}. EViews uses the mean of the initial $(T+1) / 2$ observations of Y_{t} to start the recursion.

Example: The figure below is a plot of the population in Portugal from 1966 to 1998 (Source: INE) .

Time Series Analysis

```
Date: 08/02/18 Time: 21:44
Sample: 1966 1998
Included observations: 33
Method: Single Exponential
Original Series: POPUL
Forecast Series: POPULSM
Parameters: Alpha 0.9990
Sum of Squared Residuals 0.790758
Root Mean Squared Error
0.154798
End of Period Levels: Mean 9.969970
```

```
Date:08/02/18 Time: 21:46
Sample: 1966 1998
Included observations: 33
Method: Single Exponential
Original Series: POPUL
Forecast Series: POPULSM1
Parameters: Alpha 0.1000
Sum of Squared Residuals 3.902201
Root Mean Squared Error 0.343873
End of Period Levels: Mean
9.838343
```

Optimal α
RMSE=0.155
$\alpha=0.1$
RMSE $=0.344$

Time Series Analysis

Time Series Analysis

Double Smoothing

It is appropriate for series with a linear trend
The double smoothing method involves the following recursion equations:

$$
\begin{aligned}
& S_{t}=\alpha Y_{t}+(1-\alpha) S_{t-1} \\
& D_{t}=\alpha S_{t}+(1-\alpha) D_{t-1}
\end{aligned}
$$

where S_{t} is the single smoothed series, D_{t} is the double smoothed series, and $0 \leq \alpha \leq$ 1 is the smoothing parameter. Forecasts are computed as:

$$
\hat{Y}_{T+k}=a_{T}+k b_{T}
$$

where $a_{T}=2 S_{t}-D_{t}$ and $b_{T}=\left(S_{t}-D_{t}\right) \alpha /(1-\alpha)$.
Initialization: $b_{1}=\left(\sum_{t=m+1}^{2 m} Y_{t}-\sum_{t=1}^{m} Y_{t}\right) / m^{2} \quad$ (where m is an arbitrary number of observations) and $a_{1}=\left(\sum_{t=1}^{m} Y_{t}\right) / m-b_{1} \times(m+1) / 2$.

Optimization: We choose the smoothing parameter α by minimizing the sum of squares of one-step-ahead forecast errors.

Time Series Analysis

Example: To illustrate the application of double smoothing method, we forecast data on interest rate in Portugal from 2000q1 to 2017q3.

Time Series Analysis

Holt's Linear Trend

Holt (1957) extended simple exponential method to allow forecasting of data with a linear time trend (and no seasonal variation).

$$
\begin{gathered}
a_{t}=\alpha Y_{t}+(1-\alpha)\left(a_{t-1}+b_{t-1}\right) \\
b_{t}=\beta\left(a_{t}-a_{t-1}\right)+(1-\beta) b_{t-1} \\
\hat{Y}_{t+k}=a_{t}+k b_{t}
\end{gathered}
$$

where a_{t} denotes the level of the series at time $t ; b_{t}$ denotes the trend (or slope) of the series at time $t ; 0 \leq \alpha \leq 1$ and $0 \leq \beta \leq 1$ are the smoothing parameters.

Initialization: $b_{1}=\left(\sum_{t=m+1}^{2 m} Y_{t}-\sum_{t=1}^{m} Y_{t}\right) / m^{2} \quad$ (where m is an arbitrary number of observations) and $a_{1}=\left(\sum_{t=1}^{m} Y_{t}\right) / m-b_{1} \times(m+1) / 2$.

Optimization: We choose the smoothing parameter α by minimizing the sum of squares of one-step-ahead forecast errors.

Time Series Analysis

LISBON
SCHOOL OF
ECONOMICS \& MANAGEMENT
UNIVERSIDADE DE LISBOA
Example: To illustrate the application of Holt's linear trend method, we forecast again data on interest rate in Portugal from 2000q1 to 2017q3.

Sample: 2000Q1 2017Q3			
Included observations: 71			
Method: Holt-Winters No Seasonal			
Original Series: INTEREST			
Forecast Series: INTEREST_HOLT			
Parameters:	Alpha		1.0000
	Beta		1.0000
Sum of Squared Residuals			466952.1
Root Mean Squared Error			81.09741
End of Period Levels:		Mean	7548.200
		Trend	-56.80000

Time Series Analysis

Holt-Winters additive method

This method is appropriate for series with a linear time trend and additive seasonal variation.

$$
\begin{gathered}
a_{t}=\alpha\left(Y_{t}-S_{t-s}\right)+(1-\alpha)\left(a_{t-1}+b_{t-1}\right) \\
b_{t}=\beta\left(a_{t}-a_{t-1}\right)+(1-\beta) b_{t-1} \\
S_{t}=\gamma\left(Y_{t}-a_{t}\right)+(1-\gamma) S_{t-s} \\
\hat{Y}_{t+k}=a_{t}+k b_{t}+S_{t+k-s}
\end{gathered}
$$

where a_{t} denotes the level of the series at time $t ; b_{t}$ denotes of the trend (or slope) of the series at time $t ; S_{t}$ denotes the seasonal factor of the series, and s denotes the number of seasons in a year; $0 \leq \alpha \leq 1,0 \leq \beta \leq 1$ and $0 \leq \gamma \leq 1$ are the smoothing parameters.

Initialization: A common approach is to set

$$
b_{s}=\left(\sum_{t=s+1}^{2 s} Y_{t}-\sum_{t=1}^{s} Y_{t}\right) / s^{2}, a_{s}=\left(\sum_{t=1}^{s} Y_{t}\right) / s \text { and } S_{i}=Y_{i}-a_{s}, i=1,2, \ldots, s
$$

Optimization: We choose the smoothing parameters (α, β and γ) by minimizing the sum of squares of one-step-ahead forecast errors.

Time Series Analysis

LISBON
SCHOOL OF
ECONOMICS \& MANAGEMENT
UNIVERSIDADE DE LISBOA
Example: We employ the Holt-Winters with additive seasonality to forecast wine consumption in Australia for the period 1980m1 to 1995 m 7.

WINE by Season

Time Series Analysis

LISBON
SCHOOL OF
ECONOMICS \&
MANAGEMENT
UNIVERSIDADE DE LISBOA

Time Series Analysis

Holt-Winters multiplicative method

This method is appropriate for series with a linear time trend and multiplicative seasonal variation.

$$
\begin{gathered}
a_{t}=\alpha\left(Y_{t} / S_{t-s}\right)+(1-\alpha)\left(a_{t-1}+b_{t-1}\right) \\
b_{t}=\beta\left(a_{t}-a_{t-1}\right)+(1-\beta) b_{t-1} \\
S_{t}=\gamma\left(Y_{t} / a_{t}\right)+(1-\gamma) S_{t-s} \\
\hat{Y}_{t+k}=\left(a_{t}+k b_{t}\right) S_{t+k-s}
\end{gathered}
$$

where a_{t} denotes the level of the series at time $t ; b_{t}$ denotes of the trend (or slope) of the series at time $t ; S_{t}$ denotes the seasonal factor of the series, and s denotes the number of seasons in a year; $0 \leq \alpha \leq 1,0 \leq \beta \leq 1$ and $0 \leq \gamma \leq 1$ are the smoothing parameters.

Initialization: A common approach is to set

$$
\overline{b_{s}}=\left(\sum_{t=s+1}^{2 s} Y_{t}-\sum_{t=1}^{s} Y_{t}\right) / s^{2}, a_{s}=\left(\sum_{t=1}^{s} Y_{t}\right) / s \text { and } S_{i}=Y_{i} / a_{s}, i=1,2, \ldots, s
$$

Optimization: We choose the smoothing parameters (α, β and γ) by minimizing the sum of squares of one-step-ahead forecast errors.

Time Series Analysis

Example: EViews file data-forecasting.wk1 contains the monthly air passengers in the US (page: passengers) for the period 1949m1 to 1960m12.
a) Plot the series and describe the main features of the series
b) Forecast the next two years using Holt-Winters multiplicative method.
c) Forecast the next two years using Holt-Winters additive method.
d) Report and compare the RMSE of the one-step ahead forecasts from the two approaches.

Linear Time Series Models

LISBON
SCHOOL OF
CoNomics
mangeement
UNIVERSIDADE DE LISBOA

Stationarity

Definitions:

A stochastic process is a family of time indexed random variables, $Z(w, t)$: $t=0, \pm 1, \pm 2, \ldots$, where w is the sample space and t is the index set.
A time series is a realization (or sample function) from a certain stochastic process, $Y t, t=1,2, \ldots, n$.

A process $Y t, t=1,2, \ldots, n$ is said to be weakly stationary if it has constant mean, constant variance, and the covariance and the correlation between $Y t$ and $Y t+k$ depend only on time difference k.

$$
\begin{aligned}
& \mu_{t}=E\left(Y_{t}\right)=\mu, \\
& \sigma_{t}^{2}=\operatorname{Var}\left(Y_{t}\right)=E\left(Y_{t}-\mu_{t}\right)^{2}=\sigma^{2}, \\
& \gamma\left(t_{1}, t_{2}\right)=E\left(Y_{t_{1}}-\mu_{t_{1}}\right)\left(Y_{t_{2}}-\mu_{t_{2}}\right)=\gamma\left(t_{1}+k, t_{2}+k\right), \forall t_{1}, t_{2}, k \\
& \rho\left(t_{1}, t_{2}\right)=\frac{\gamma\left(t_{1}, t_{2}\right)}{\sqrt{\sigma_{t_{1}}^{2}} \sqrt{\sigma_{t_{2}}^{2}}}=\rho\left(t_{1}+k, t_{2}+k\right), \forall t_{1}, t_{2}, k,
\end{aligned}
$$

Stationary?

Autocorrelation

The autocovariance function (ACOVF) and autocorrelation function (ACF) represent the covariance and correlation between $Y t$ and $Y t+k$, from the same process Y separated only by k time lags.

$$
\gamma_{k}=\operatorname{Cov}\left(Y_{t}, Y_{t+k}\right)=E\left[\left(Y_{t}-\mu\right)\left(Y_{t+k}-\mu\right)\right] \quad \rho_{k}=\frac{\operatorname{Cov}\left(Y_{t}, Y_{t+k}\right)}{\sqrt{\left.\left[\operatorname{Var}\left(Y_{t}\right)\right] \operatorname{Var}\left(Y_{t+k}\right)\right]}}=\frac{\gamma_{k}}{\gamma_{0}}
$$

The autocovariance function and the autocorrelation function have the following properties:

1) $\gamma_{0}=\operatorname{Var}\left(Y_{t}\right) ; \rho_{0}=1$;
2) $\left|\gamma_{k}\right| \leq \gamma_{0} ;\left|\rho_{k}\right| \leq 1$;
3) $\gamma_{k}=\gamma_{-k} ; \rho_{k}=\rho_{-k}$ for all k;

Partial autocorrelation

The partial autocorrelation function (PACF) measures the correlation between Y_{t} and Y_{t-k}, when the effects of intervening variables $Y_{t-1}, Y_{t-2}, \ldots, Y_{t-k+1}$ are removed. The partial autocorrelation coefficient of order k is denoted by $\phi_{k k}$ and can be derived by regressing Y_{t+k} against $Y_{t+k-1}, Y_{t+k-2}, \ldots, Y_{t}$:

$$
Y_{t+k}=\phi_{k 1} Y_{t+k-1}+\phi_{k 2} Y_{t+k-2}+\cdots+\phi_{k k} Y_{t}+e_{t+k} .
$$

Multiplying Y_{t+k-j} on both sides of the equation and taking expected values, we get

$$
\phi_{11}=\rho_{1}, \phi_{22}=\frac{\left|\begin{array}{cc}
1 & \rho_{1} \\
\rho_{1} & \rho_{2}
\end{array}\right|}{\left|\begin{array}{cc}
1 & \rho_{1} \\
\rho_{1} & 1
\end{array}\right|}, \phi_{33}=\frac{\left|\begin{array}{ccc}
1 & \rho_{1} & \rho_{1} \\
\rho_{1} & 1 & \rho_{2} \\
\rho_{2} & \rho_{1} & \rho_{3}
\end{array}\right|}{\left|\begin{array}{ccccc}
1 & \rho_{1} & \rho_{2} \\
\rho_{1} & 1 & \rho_{1} \\
\rho_{2} & \rho_{1} & 1
\end{array}\right|}, \ldots, \left.\phi_{k k}=\frac{\left|\begin{array}{ccccc}
1 & \rho_{1} & \rho_{2} & \cdots & \rho_{k-2} \\
\rho_{1} & 1 & \rho_{1} & \cdots & \rho_{k-3} \\
\rho_{2} \\
\vdots & \vdots & \vdots & & \vdots \\
\rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_{1} \\
\rho_{k}
\end{array}\right|}{\left|\begin{array}{ccccc}
1 & \rho_{1} & \rho_{2} & \cdots & \rho_{k-2} \\
\rho_{k-1} \\
\rho_{1} & 1 & \rho_{1} & \cdots & \rho_{k-3} \\
\vdots & \vdots & \vdots & & \vdots \\
\rho_{k-2} \\
\rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_{1}
\end{array}\right|} \begin{aligned}
& 1
\end{aligned} \right\rvert\,
$$

White noise

A process is called a "white noise" process if it is a sequence of uncorrelated random variables:

$$
Y_{t}=\varepsilon_{t},
$$

where ε_{t} has constant mean $E\left(\varepsilon_{t}\right)=\mu_{\varepsilon}$ (usually assumed to be 0), constant variance $\operatorname{Var}\left(\varepsilon_{t}\right)=\sigma_{\varepsilon}^{2}$ and null covariance $\operatorname{Cov}\left(\varepsilon_{t}, \varepsilon_{t-k}\right)=0$ for all $k \neq 0$. The ACF and PACF of a white noise process are null for all $k \neq 0$.

Simulation of a white noise process with zero mean and unit variance

Sample ACF and PACF

For a given observed time series, $Y_{t}, t=1,2, \ldots, n$, the sample autocorrelation function (ACF) is defined as

$$
\hat{\rho}_{k}=\frac{\hat{\gamma}_{k}}{\hat{\gamma}_{0}}=\frac{\sum_{t=k+1}^{n}\left(Y_{t}-\bar{Y}\right)\left(Y_{t-k}-\bar{Y}\right)}{\sum_{t=1}^{n}\left(Y_{t}-\bar{Y}\right)^{2}}, \quad k=0,1,2, \ldots
$$

The sample partial autocorrelation function (PACF) is obtained by a recursive method as follows:

$$
\hat{\phi}_{k k}=\frac{\hat{\rho}_{k}-\sum_{j=1}^{k-1} \hat{\phi}_{k-1, j} \hat{\rho}_{k-j}}{1-\sum_{j=1}^{k-1} \hat{\phi}_{k-1, j} \hat{\rho}_{j}},
$$

with $\hat{\phi}_{11}=\hat{\rho}_{1}$ and $\hat{\phi}_{k j}=\hat{\phi}_{k-1, j}-\hat{\phi}_{k k} \hat{\phi}_{k-1, k-j}, j=1,2, \ldots, k-1$.

Backshift notation

A very useful notation in time series analysis is the backshift operator B, which is used as follows:

$$
B Y_{t}=Y_{t-1} .
$$

In other words, B has the effect of shifting the data back one period.
For k periods, the notation is

$$
B^{k} Y_{t}=Y_{t-k} .
$$

For monthly data, B^{12} is used to shift attention to the same month last year, $B^{12} Y_{t}=Y_{t-12}$.
For quarterly data, the backshift operator is used as follows: $B^{4} Y_{t}=Y_{t-4}$.

MA(∞) representation

The process Y_{t} can be expressed as a linear combination of a sequence of uncorrelated random variables:

$$
Y_{t}=\varepsilon_{t}+\psi_{1} \varepsilon_{t-1}+\psi_{2} \varepsilon_{t-2}+\cdots=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j},
$$

where $\psi_{0}=1, \varepsilon_{t}$ is a zero mean white noise with constant variance and $\sum_{j=0}^{\infty} \psi_{j}^{2}<\infty$.

It can be shown that

$$
\begin{gathered}
E\left(Y_{t}\right)=0, \operatorname{Var}\left(Y_{t}\right)=\sigma_{\varepsilon}^{2} \sum_{j=0}^{\infty} \psi_{j}^{2}, \quad E\left(\varepsilon_{t} Y_{t-k}\right)=\left\{\begin{array}{rr}
\sigma_{\varepsilon}^{2}, & k=0 \\
0, & k>0,
\end{array}\right. \\
\text { and } \rho_{k}=\frac{\gamma_{k}}{\gamma_{0}}=\frac{E\left(Y_{t} Y_{t+k}\right)}{\operatorname{Var}\left(Y_{t}\right)}=\frac{\sum_{j=0}^{\infty} \psi_{j} \psi_{j+k}}{\sum_{j=0}^{\infty} \psi_{j}^{2}}
\end{gathered}
$$

$A R(\infty)$ representation

Another useful form is to write Y_{t} in an autoregressive representation, as follows:

$$
Y_{t}=\pi_{1} Y_{t-1}+\pi_{2} Y_{t-2}+\cdots+\varepsilon_{t}=\sum_{j=1}^{\infty} \pi_{j} Y_{t-j}+\varepsilon_{t},
$$

or, equivalently,

$$
\pi(B) Y_{t}=\varepsilon_{t},
$$

where $\pi(B)=1-\pi_{1} B-\pi_{2} B^{2}-\cdots=1-\sum_{j=1}^{\infty} \pi_{j} B^{j}$ and $1+\sum_{j=1}^{\infty}\left|\pi_{j}\right|<\infty$.

Autoregressive models

The finite-order representation of the autoregressive model described earlier, if only a finite number of π weights are nonzero, is given by

$$
Y_{t}=\phi_{1} Y_{t-1}+\cdots+\phi_{p} Y_{t-p}+\varepsilon_{t},
$$

where ε_{t} is a zero mean white noise series. Because $\sum_{j=1}^{\infty}\left|\pi_{j}\right|=\sum_{j=1}^{p}\left|\phi_{j}\right|<\infty$, the process is always invertible. To be stationaty, the roots of $\left(1-\phi_{1} B-\cdots-\phi_{p} B^{p}\right)=0$ must be outside of the unit circle.

AR(1) model
The first-order autoregressive model or $\mathrm{AR}(1)$ model is given by

$$
Y_{t}=\phi Y_{t-1}+\varepsilon_{t},
$$

where ε_{t} is a zero mean white noise series. The model is always invertible. To be stationary, the roots of $(1-\phi B)=0$ must be outside of the unit circle. Because the root $B=1 / \phi$, for a stationary model, we have $|\phi|<1$.

Autoregressive models

(a) $Y_{t}=0,7 Y_{t-1}+\varepsilon_{t}$

(b) $Y_{t}=-0,7 Y_{t-1}+\varepsilon_{t}$

Simulated AR(1) models with $\phi=0.7$ and $\phi=-0.7$

Autoregressive models

$$
\operatorname{ACF} \text { of } \operatorname{AR}(1): Y_{t}=0,7 Y_{t-1}+\varepsilon_{t} \quad \text { PACF of } \operatorname{AR}(1): Y_{t}=0,7 Y_{t-1}+\varepsilon_{t}
$$

$$
\operatorname{ACF} \text { of } \operatorname{AR}(1): Y_{t}=-0,7 Y_{t-1}+\varepsilon_{t}
$$

$$
\text { PACF of } \operatorname{AR}(1): Y_{t}=-0,7 Y_{t-1}+\varepsilon_{t}
$$

ACF and PACF of the simulated $A R(1)$ models

Autoregressive models

AR(2) model
The second-order autoregressive $\operatorname{AR}(2)$ models is

$$
Y_{t}=\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\varepsilon_{t},
$$

or

$$
\phi_{2}(B) Y_{t}=\varepsilon_{t},
$$

where ε_{t} is a zero mean white noise series. To be stationary, the roots of
$\phi_{2}(B)=1-\phi_{1} B-\phi_{2} B^{2}=0$ must be outside of the unit circle. Thus, we have the following necessary and sufficient conditions for stationarity:

$$
\phi_{2}+\phi_{1}<1 \wedge \phi_{2}-\phi_{1}<1 \wedge-1<\phi_{2}<1 .
$$

The ACF tails off as an exponential decay or a damped sine waves depending on the roots of $\phi(B)=0$, and the PACF cuts off after lag $2, \phi_{k k}=0$ for $k \geq 3$.

AR(p) model
More complicated conditions hold for $\operatorname{AR}(p)$ models with $p \geq 3$.
Econometric software (EViews among others) takes care of this.

Autoregressive models

ACF and PACF of a simulated stationary $\operatorname{AR}(2)$ model: $Y_{t}=0,6 Y_{t-1}+0,3 Y_{t-2}+\varepsilon_{t}$

Autoregressive models

ACF and PACF of a simulated nonstationary $\operatorname{AR}(2)$ model: $Y_{t}=0,7 Y_{t-1}+0,4 Y_{t-2}+\varepsilon_{t}$

Moving average models

The finite-order representation of the moving average model described earlier, if only a finite number of ψ weights are nonzero, is given by

$$
Y_{t}=\varepsilon_{t}-\theta_{1} \varepsilon_{t-1}-\cdots-\theta_{q} \varepsilon_{t-q},
$$

where ε_{t} is a zero mean white noise series. Because $1+\theta_{1}^{2}+\cdots+\theta_{q}^{2}<\infty$, the process is always stationary. To be invertible, the roots of $\left(1-\theta_{1} B-\cdots-\theta_{q} B^{q}\right)=0$ must be outside of the unit circle.

MA(1) model

The first-order moving average model or MA(1) model is

$$
Y_{t}=\varepsilon_{t}-\theta_{1} \varepsilon_{t-1},
$$

or

$$
Y_{t}=\theta(B) \varepsilon_{t},
$$

where $\theta(B)=1-\theta_{1} B$ and ε_{t} is white noise. To be invertible, the root of $\theta(B)=0$ must lie outside the unit circle. Thus, we require $\left|\theta_{1}\right|<1$.

Moving average models

(a) $Y_{t}=\varepsilon_{t}-0.75 \varepsilon_{t-1}$

(b) $Y_{t}=\varepsilon_{t}+0.75 \varepsilon_{t-1}$

Simulated MA(1) models

Moving average models

ACF of MA(1): $Y_{t}=\varepsilon_{t}-0.75 \varepsilon_{t-1} \quad$ PACF of MA(1): $Y_{t}=\varepsilon_{t}-0.75 \varepsilon_{t-1}$

ACF of MA(1): $Y_{t}=\varepsilon_{t}+0.75 \varepsilon_{t-1}$

PACF of MA(1): $Y_{t}=\varepsilon_{t}+0.75 \varepsilon_{t-1}$

ACF and PACF of simulated MA(1) models

Moving average models

MA(2) model
The second-order moving average $\mathrm{MA}(2)$ model is given by

$$
Y_{t}=\varepsilon_{t}-\theta_{1} \varepsilon_{t-1}-\theta_{2} \varepsilon_{t-2},
$$

or

$$
Y_{t}=\theta_{2}(B) \varepsilon_{t},
$$

where $\theta_{2}(B)=1-\theta_{1} B-\theta_{2} B^{2}$ and ε_{t} is white noise. To be invertible, the roots of $\theta_{2}(B)=0$ must lie outside the unit circle. Hence, we have the following conditions:

$$
\theta_{2}+\theta_{1}<1 \wedge \theta_{2}-\theta_{1}<1 \wedge-1<\theta_{2}<1 .
$$

ACF of the MA(2) model cuts off after lag 2 and PACF tails off as an exponential decay or a damped sine wave depending on the roots of $\theta_{2}(B)=0$.

MA(q) model
More complicated conditions hold for $\mathrm{MA}(q)$ models with $q \geq 3$.
Econometric software (EViews among others) takes care of this.

Moving average models

ACF and PACF of the simulated MA(2) model: $Y_{t}=\varepsilon_{t}-0,7 \varepsilon_{t-1}+0,25 \varepsilon_{t-2}$

Moving average models

ACF and PACF of the simulated MA(2) model: $Y_{t}=\varepsilon_{t}+0,75 \varepsilon_{t-1}-0,2 \varepsilon_{t-2}$

Autoregressive and moving average models

ARMA(1,1) model
The mixed autoregressive and moving average $\operatorname{ARMA}(1,1)$ model includes the autoregressive $\mathrm{AR}(1)$ and moving average $\mathrm{MA}(1)$ models as special cases.

$$
Y_{t}=\phi Y_{t-1}+\varepsilon_{t}-\theta \varepsilon_{t-1},
$$

or

$$
\phi(B) Y_{t}=\theta(B) \varepsilon_{t},
$$

where $\phi(B)=1-\phi B, \theta(B)=1-\theta B$ and ε_{t} is white noise. To be stationary, the root of $\phi(B)=0$ must lie outside the unit circle, i.e., $-1<\phi<1$. To be invertible, the root of $\theta(B)=0$ must lie outside the unit circle, i.e., $-1<\theta<1$.

The ARMA $(1,1)$ model can be written in a pure moving average representation as

$$
Y_{t}=\psi(B) \varepsilon_{t}
$$

where

$$
\psi(B)=\left(1+\psi_{1} B+\psi_{2} B^{2}+\cdots\right)=\frac{1-\theta B}{1-\phi B} .
$$

Autoregressive and moving average models

The $\operatorname{ARMA}(1,1)$ model can be written in a pure autoregressive representation as

$$
\pi(B) Y_{t}=\varepsilon_{t},
$$

where

$$
\pi(B)=1-\pi_{1} B-\pi_{2} B^{2}-\cdots=\frac{1-\phi B}{1-\theta B} .
$$

Both the ACF and PACF of a mixed $\operatorname{ARMA}(1,1)$ model tail off as k incresaes, with its shape depending on the signs and magnitudes of ϕ and θ.

ARMA(p,q) model

The general mixed autoregressive and moving average $\operatorname{ARMA}(p, q)$ model is given by

$$
Y_{t}=\phi_{1} Y_{t-1}+\cdots+\phi_{p} Y_{t-p}+\varepsilon_{t}-\theta_{1} \varepsilon_{t-1}-\cdots-\theta_{q} \varepsilon_{t-q},
$$

or

$$
\phi_{p}(B) Y_{t}=\theta_{q}(B) \varepsilon_{t},
$$

where $\phi_{p}(B)=1-\phi_{1} B-\cdots-\phi_{p} B^{p}, \theta_{q}(B)=1-\theta_{1} B-\cdots-\theta_{q} B^{q}$ and ε_{t} is white noise. To be stationary, the roots of $\phi_{p}(B)=0$ must lie outside the unit circle. To be invertible, the roots of $\theta_{q}(B)=0$ must lie outside the unit circle.

Autoregressive and moving average models

LISBON
SCHOOL OF
ECONOMICS \& MANAGEMENT
UNIVERSIDADE DE LISBOA

ACF and PACF of the ARMA(1,1) model: $Y_{t}=0,85 Y_{t-1}+\varepsilon_{t}+0,5 \varepsilon_{t-1}$

Autoregressive and moving average models

LISBON
SCHOOL OF
ECONOMICS \& MANAGEMENT
UNIVERSIDADE DE LISBOA

ACF and PACF of the $\operatorname{ARMA}(1,1)$ model: $Y_{t}=-0,4 Y_{t-1}+\varepsilon_{t}-0,7 \varepsilon_{t-1}$

Seasonal ARMA models

Seasonal autoregressive and moving average SARMA $(P, Q)_{s}$ model
The seasonal $\operatorname{SARMA}(P, Q)_{s}$ model is represented by

$$
Y_{t}=\Phi_{1} Y_{t-s}+\cdots+\Phi_{P} Y_{t-P_{s}}+\varepsilon_{t}-\Theta_{1} \varepsilon_{t-s}-\cdots-\Theta_{Q} \varepsilon_{t-Q s},
$$

or

$$
\Phi_{\rho}\left(B^{s}\right) Y_{t}=\Theta_{Q}\left(B^{s}\right) \varepsilon_{t},
$$

where $\Phi_{P}\left(B^{s}\right)=1-\Phi_{1} B^{s}-\cdots-\Phi_{P} B^{\rho s}, \quad \Theta_{Q}\left(B^{s}\right)=1-\Theta_{1} B^{s}-\cdots-\Theta_{Q} B^{Q s}$ and ε_{t} is a zero mean white noise. To be stationary and invertible, the roots of $\Phi_{\rho}\left(B^{s}\right)=0$ e $\Theta_{Q}\left(B^{s}\right)=0$ must lie outside of the unit circle, respectively.

Both the ACF and PACF of the SARMA $(P, Q)_{s}$ model exhibit exponential decays and damped sine waves at the seasonal lags.

Seasonal ARMA models

(i) $\left(1-0.65 B^{12}\right) Y_{t}=\left(1+0.25 B^{12}\right) \varepsilon_{t}$

(ii) $\left(1-0.3 B^{4}\right) Y_{t}=\left(1-0.4 B^{4}+0.15 B^{8}\right) \varepsilon_{t}$

Simulated $\operatorname{SARMA}(1,1)_{12}$ and $\operatorname{SARMA}(1,2)_{4}$ models

Seasonal ARMA models

ACF of $\operatorname{SARMA}(1,1)_{12}$
PACF of SARMA(1,1) ${ }_{12}$
$\left(1-0.65 B^{12}\right) Y_{t}=\left(1+0.25 B^{12}\right) \varepsilon_{t}$

ACF of $\operatorname{SARMA}(1,2)_{4}$

$$
\left(1-0.3 B^{4}\right) Y_{t}=\left(1-0.4 B^{4}+0.15 B^{8}\right) \varepsilon_{t}
$$

ACF and PACF of simulated $\operatorname{SARMA}(1,1)_{12}$ and $\operatorname{SARMA}(1,2)_{4}$ models

General multiplicative ARMA models

If we combine non-seasonal $\operatorname{ARMA}(p, q)$ and seasonal $\operatorname{SARMA}(P, Q)_{s}$ models, we obtain a general multiplicative model of order $(p, q) \times(P, Q)_{s}$

$$
\left(1-\phi_{1} B-\cdots-\phi_{p} B^{p}\right)\left(1-\Phi_{1} B^{s}-\cdots-\Phi_{p} B^{p_{s}}\right) Y_{t}=\left(1-\theta_{1} B-\cdots-\theta_{q} B^{q}\right)\left(1-\Theta_{1} B^{s}-\cdots-\Theta_{Q} B^{Q_{s}}\right) \varepsilon_{t},
$$

or

$$
\phi_{p}(B) \Phi_{P}\left(B^{s}\right) Y_{t}=\theta_{q}(B) \Theta_{Q}\left(B^{s}\right) \varepsilon_{t} .
$$

ACF and PACF of a simulated $\operatorname{SARMA}(1,0)(1,0)_{12}$ model: $(1-0.7 B)\left(1+0.25 B^{12}\right) Y_{t}=\varepsilon_{t}$

Linear nonstationary time series models

Nonstationary model in the mean
The mean function of a nonstationary model can be represented essentially by two models: deterministic trend models and stochastic trend models.

For a deterministic trend model, one can use the linear trend model, $Y_{t}=a+b t+\varepsilon_{t}$ or the quadratic trend model, $Y_{t}=a+b t+c t^{2}+\varepsilon_{t}$.

Linear trend model

Quadratic trend model

Linear nonstationary time series models

Differencing and stochastic trend model
The d th differenced series, for some integer $d \geq 1$, is given by

$$
\nabla^{d} Y_{t}=(1-B)^{d} Y_{t} .
$$

For $d=1$, we have first differences

$$
\nabla Y_{t}=(1-B) Y_{t}=Y_{t}-Y_{t-1} .
$$

For seasonal time series, we can use a sth seasonal differencing

$$
\nabla^{s} Y_{t}=\left(1-B^{s}\right) Y_{t}=Y_{t}-Y_{t-s} .
$$

Finally, a sth seasonal differencing of order D, for some integer $D \geq 1$ is given by

$$
\left(\nabla^{s}\right)^{D} Y_{t}=\left(1-B^{s}\right)^{D} Y_{t} .
$$

Usually $D=1,2$ is sufficient to obtain seasonal stationarity.

Linear nonstationary time series models

A special case of the nonstationary models is the stochastic trend model,

$$
Y_{t}=Y_{t-1}+\varepsilon_{t},
$$

where ε_{t} is white noise. This is the so-called "random walk" model.

ACF and PACF of a simulated random walk model

Linear nonstationary time series models

Nonstationarity in the variance
Many time series are stationary in the mean but are nonstationary in the variance. To reduce this type of nonstationarity, we need variance stabilizing transformations such as the power transformation of Box-Cox (1964),

$$
X_{t}=T\left(Y_{t}\right)= \begin{cases}Y_{t}^{\lambda}, & \lambda \neq 0 \\ \log \left(Y_{t}\right), & \lambda=0\end{cases}
$$

A simulated time series nonstationary in the variance but stationary in the mean

A simulated time series nonstationarity in both the mean and variance

Linear nonstationary time series models

In practice, we fit the model to $Y_{t}^{(\lambda)}=\frac{Y_{t}^{\lambda}-1}{\lambda \tilde{Y}^{\lambda-1}}$, for various values of $\lambda \neq 0$, where \tilde{Y} is the geometric mean of the series Y_{t}, and choose the value of λ that results in the smallest residual sum of squares. For $\lambda=0$, we have $Y_{t}^{(0)}=\tilde{Y} \log \left(Y_{t}\right)$.

Autoregressive integrated moving average (ARIMA) models

A general model for representing nonstationary nonseasonal time series is given by the autoregressive integrated moving average $\operatorname{ARIMA}(p, d, q)$ model

$$
\left(1-\phi_{1} B-\cdots-\phi_{p} B^{p}\right)(1-B)^{d} Y_{t}=\left(1-\theta_{1} B-\cdots-\theta_{q} B^{q}\right) \varepsilon_{t}
$$

or

$$
\phi_{p}(B)(1-B)^{d} Y_{t}=\theta_{q}(B) \varepsilon_{t}
$$

where $(1-B)^{d}$ is the differencing operator of order d, for $d \geq 1, \phi_{p}(B)$ is a stationary autoregressive (AR) operator, $\theta_{q}(B)$ is an invertible moving average (MA) operator and ε_{t} is a zero mean white noise.

Some important special cases of the ARIMA model are $\operatorname{ARIMA}(0,1,0), \operatorname{ARIMA}(1,1,0)$, $\operatorname{ARIMA}(0,1,1)$ and $\operatorname{ARIMA}(1,1,1)$ models.

Linear nonstationary time series models

A simulated series from ARIMA $(1,1,0)$ model: $(1-0,75 B)(1-B) Y_{t}=\varepsilon_{t}$

ACF and PACF of the ARIMA $(1,1,0)$ model: $(1-0,75 B)(1-B) Y_{t}=\varepsilon_{t}$

Linear nonstationary time series models

Multiplicative autoregressive integrated moving average models
The multiplicative seasonal ARIMA model is an extension of the nonseasonal ARIMA model, by adding seasonal autoregressive and moving average factors. The model, often denoted as $\operatorname{SARIMA}(p, d, q)(P, D, Q)_{s}$, is represented by

$$
\phi_{p}(B) \Phi_{P}\left(B^{s}\right)(1-B)^{d}\left(1-B^{s}\right)^{D} Y_{t}=\theta_{q}(B) \Theta_{Q}\left(B^{s}\right) \varepsilon_{t},
$$

where $\phi_{p}(B)$ and $\theta_{q}(B)$ are regular (nonseasonal) autoregressive and moving average factors, respectively, $\Phi_{\rho}\left(B^{s}\right)$ and $\Theta_{Q}\left(B^{s}\right)$ are seasonal autoregressive and moving average factors, respectively, and s is the seasonal period.

For example, consider the $\operatorname{SARIMA}(0,1,1)(0,1,1)_{12}$ model

$$
(1-B)\left(1-B^{12}\right) Y_{t}=\left(1-\theta_{1} B\right)\left(1-\Theta_{1} B^{12}\right) \varepsilon_{t}
$$

Model identification

Steps for model identification

- Plot the time series and examine whether the series contains a trend, seasonality, ouliers, nonconstant variances and other nonstationary phenomena. Choose proper variance-stabilizing (Box-Cox's power transformation) and differencing transformations.
- Compute the sample ACF and the sample PACF of the original series and identify the degree of differencing d and D necessary to achieve stationarity. In practice, d and D are either 0,1 , or 2 .
- Compute the sample ACF and the sample PACF of the transformed and differenced and identify the orders p and q for the regular autoregressive and moving average operators and the orders P and Q for the seasonal autoregressive and moving average operators, respectively. Usually, the needed orders of integers p, q, P and Q are less or equal to 3 .

Model identification

Unit Root Tests

Statistical tests to determine the required order of differencing

- Augmented Dickey-Fuller (ADF) test (most popular)

Null hypothesis: The data are non-stationary and non-seasonal $(\phi=0)$
$\nabla \mathrm{Y}(\mathrm{t})=\phi \mathrm{Y}(\mathrm{t}-1)+\mathrm{b} 1 \nabla \mathrm{Y}(\mathrm{t}-1)+\ldots+\nabla \mathrm{Y}(\mathrm{t}-\mathrm{p})$

- Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test

Null hypothesis: The data are stationary and non-seasonal

- Other tests: Phillipis-Perron (PP) test; Seasonal tests

Model identification

Theoretical ACF and PACF patterns for ARMA models
$\left.\begin{array}{|c|c|c|}\hline \text { Model } & \text { ACF } & \text { PACF } \\ \hline \operatorname{AR}(p) & \begin{array}{c}\text { Tails off as exponential decay } \\ \text { or damped sine wave }\end{array} & \text { Cuts off after lag } p \\ \hline \text { MA }(q) & \text { Cuts off after lag } q & \begin{array}{c}\text { Tails off as exponential decay } \\ \text { or damped sine wave }\end{array} \\ \hline \text { ARMA }(p, q) & \text { Tails off after lag }(q-p) & \text { Tails off after lag }(q-p) \\ \hline \operatorname{SAR}(P) & \begin{array}{c}\text { Tails off as exponential decay } \\ \text { or damped sine wave at the } \\ \text { seasonal lags } s, 2 s, \ldots\end{array} & \text { Cuts off after lag } P \times s \\ \hline \operatorname{SMA}(Q) & \begin{array}{c}\text { Cuts off after lag } Q \times s \\ \text { SARMA }(P, Q)\end{array} & \begin{array}{c}\text { Tails off as exponential decay } \\ \text { or damped sine wave at the } \\ \text { seasonal lags } s, 2 s, \ldots\end{array} \\ \hline \text { SARMA }(p, q)(P, Q)_{s} & \begin{array}{c}\text { Tails off as exponential decay } \\ \text { or damped sine wave at the } \\ \text { seasonal lags } s, 2 s, \ldots\end{array} & \begin{array}{c}\text { Tails off as exponential decay } \\ \text { or damped sine wave at the } \\ \text { seasonal lags } s, 2 s, \ldots\end{array} \\ \hline \text { seasonal and nonseasonal at the } \\ \text { lags }\end{array} \quad \begin{array}{c}\text { Tails off as exponential decay } \\ \text { or damped sine wave at the } \\ \text { seasonal and nonseasonal } \\ \text { lags }\end{array}\right]$

Model identification

Example: 1-Year US Treasury Bill: Secondary Market Rate

Model identification

Example: 1-Year US Treasury Bill: Secondary Market Rate

(2. EViews							回	-
File Edit Object	View	Qu	uick	Options	Add-i	W	indow	
\checkmark Series: TB1YR	Workfile: D	ADOS_S	ST:M	ney_dem	and			-
View Proc Object	Properties	Print	Name	Freeze	Sample	Genr	Sheet	Graph ,
		Corre	logra	m of D(T)	B1YR)			

Date: 03/10/15 Time: 11:36
Sample: 1959Q1 2001Q1
Included observations: 166

Autocorrelation	Partial Correlation	AC PAC	Q-Stat	Prob
$1 \square$	$1 \square$	10.1730 .173	5.0790	0.024
\square	$\square 1$	2-0.230-0.268	14.087	0.001
1 1	$1 \square$	$\begin{array}{llll}3 & 0.107 & 0.226\end{array}$	16.036	0.001
1 1	141	$\begin{array}{lllllllllll}4 & 0.108 & -0.040\end{array}$	18.044	0.001
111	1	$5-0.017 \quad 0.057$	18.096	0.003
151	151	6-0.065-0.086	18.843	0.004
$\square 1$	$\square 1$	7-0.192-0.197	25.322	0.001
111	1	8 -0.014 0.064	25.357	0.001
1	151	$9 \quad 0.042-0.074$	25.678	0.002
151	111	$10-0.063-0.030$	26.393	0.003
101	111	11-0.053-0.037	26.901	0.005
11	111	$12-0.005-0.016$	26.905	0.008
151	151	$13-0.057-0.082$	27.494	0.011
111	1	$14 \quad 0.0370 .048$	27.747	0.015
111	151	$15-0.024-0.087$	27.853	0.023
4	151	$16-0.131-0.077$	31.067	0.013
11	111	$\begin{array}{ll}17 & -0.0020 .009\end{array}$	31.068	0.020
1	11	180.0710 .000	32.023	0.022
151	101	$19-0.072-0.062$	33.006	0.024
141	141	20-0.078-0.056	34.169	0.025

Model identification

Example: 1-Year US Treasury Bill - ARIMA($0,1,2$) model
Box-Cox's power transformation on the 1-year Treasury Bill data

λ	Residual sum of squares
1	74.49
0.5	56.24
0	50.04
-0.5	52.04
-1	61.10

Log TB1YR

Log Differenced TB1YR

Model estimation

After identifying a tentative model, we need to estimate the parameters of the model.
We discuss two widely used estimation procedures:

- Maximum likelihood estimators (MLE) method

The parameter values of the ARIMA model are obtained by minimizing the conditional log-likelihood function

$$
\ln L_{s}\left(\phi, \theta, \sigma_{\varepsilon}\right)=-\frac{n}{2} \ln 2 \pi \sigma_{\varepsilon}^{2}-\frac{S_{\varepsilon}(\phi, \theta)}{2 \sigma_{\varepsilon}^{2}}
$$

where $S_{\approx}(\phi, \theta)=\sum_{t=p+1}^{n} \sigma_{\varepsilon}^{2}(\phi, \theta \mid \mathbf{Y})$ is the conditional sum of squares function.

- Ordinary Least Squares (OLS) method OLS is the most commonly used regression method in data analysis. However, for ARMA (p, q) models, the OLS estimator will be inconsistent unless we have $q=0$. For more details, see Wei (2006).

Different software will give different estimates. We use the EViews software.

Model estimation

TESBOA
 SCHOOL OF
 H0, 1 ? 0 1, MANAGBMENTI

Example: 1-Year US Treasury Bill - ARIMA(0,1,2) model

[^0]

Coefficient covariance matrix

	$\mathrm{MA}(1)$	$\mathrm{MA}(2)$
$\mathrm{MA}(1)$	0.006167	0.002640
MA(2)	0.002640	0.006165

Model diagnostic checking

Check on whether a particular model is adequate or not. This involves:

- Analysis of the quality of parameter estimates. Inspecting the statistical significance of individual parameter estimates provides some insight into the potential relative goodness of fit of the ARIMA model. To test the null hypothesis $H_{0}: \beta_{i}=0$, we use the test statistic:

$$
|t|=\left|\frac{\hat{\beta}_{i}}{\sigma_{\hat{\beta}_{1}}}\right|>t_{(n-m)} \Rightarrow \operatorname{Reject} H_{0}: \beta_{i}=0 .
$$

- Check whether the residuals are approximately white noise. Compute the sample ACF and sample PACF of the residuals to check whether they are uncorrelated. Box and Pierce (1970) introduced a 'portmanteu' test to check the null hypothesis $H_{0}: \rho_{1}=\rho_{2}=\cdots=\rho_{k}=0$, with the test statistic

$$
Q=n \sum_{j=1}^{k} \hat{\rho}_{j}^{2},
$$

which is asymptotically distributed as χ^{2} with $k-m$ degrees of freedom, with m the number of estimated parameters.

Model diagnostic checking

Ljung e Box (1978) proposed a modified version of the statistic Q,

$$
Q^{\star}=n(n+2) \sum_{j=1}^{k} \frac{\hat{\rho}_{j}^{2}}{n-j} .
$$

This modified form of the 'portmanteu' test statistic is much closer to the $\chi^{2}(k-m)$ distribution for typical sample sizes n. Thus, if the calculated Q^{*} statistic exceeds the value $\chi^{2}(k-m)$ then the adequacy of the fitted ARMA model would be questionated.

Model diagnostic checking

LISBON
SCHOOL OF
ECONOMICS \&
MANAGEMENT
UNIVERSIDADE DE LISBOA

Example: 1-Year US Treasury Bill ARIMA($0,1,2$) model

[^1]
Model selection criteria

Selection criteria are based on summary statistics from residuals, computed from a fitted model (or on forecast errors calculated from out-of-sample forecasts).

- Akaike Information Criteria (AIC)

Assume that a statistical model of m parameters is fitted to a given time series. Akaike (1974) introduced an information criterion defined as

$$
\mathrm{AIC}=-2 \ln L+2 m,
$$

where L is the maximum likelihood and n is the effective number of observations (or number of computed residuals from the series). The EViews software computes the AIC value as

$$
\mathrm{AIC}=n \ln \hat{\sigma}_{\bar{z}}^{2}+2 m,
$$

where $\hat{\sigma}_{\tilde{\varepsilon}}^{2}$ is the residual variance for the fitted model.

- Schwartz Bayesian criterion (SBC). Schwartz (1978) introduced the following Bayesian criterion of model selection:

$$
S B C=n \ln \hat{\sigma}_{\tilde{z}}^{2}+m \ln n,
$$

where $\hat{\sigma}_{\tilde{z}}^{2}$ is the residual variance for the fitted model, m is the number of parameters and n is the effective number of observations.

Model selection criteria

LISBON
SCHOOL OF
ECONOMICS \&
MANAGEMENT
UNIVERSIDADE DE LISBOA

Example: 1-Year US Treasury Bill

AIC, BIC and HQ values for TB1YR models

	ARIMA(0,1,2)	ARIMA(2,1,0)
AIC	-1.832	-1.800
BIC	-1.794	-1.762
HQ	-1.817	-1.785

Forecasting

Suppose that at time $t=T$ we have the observations $Y_{T}, Y_{T-1}, Y_{T-2}, \ldots$
The minimum mean square error forecast of future value Y_{T+m} is defined in terms of the conditional expectation as a linear function of current and previous observations Y_{T}, Y_{T-1}, Y_{T-2}, \ldots

$$
\hat{Y}_{T}(m)=E_{T}\left(Y_{T+m}\right)=E\left(Y_{T+m} \mid Y_{T}, Y_{T-1}, Y_{T-2}, \ldots\right),
$$

where $\hat{Y}_{T}(m)$ is the m-step ahead forecast of Y_{T+m}, T is the forecast origin and m is the lead time (or forecast horizon).

Forecasts for ARMA models

Consider the general stationary $\operatorname{ARMA}(p, q)$ model:

$$
\phi(B) Y_{t}=\theta(B) \varepsilon_{t},
$$

Because the model is stationary, it has an equivalent moving average representation

$$
Y_{t}=\varepsilon_{t}+\psi_{1} \varepsilon_{t-1}+\psi_{2} \varepsilon_{t-2}+\cdots=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}=\psi(B) \varepsilon_{t},
$$

where $\psi_{0}=1, \varepsilon_{t}$ is white noise and $\psi(B)=\sum_{j=0}^{\infty} \psi_{j} B^{j}=\frac{\theta(B)}{\phi(B)}$.

Forecasting

Suppose we have the observations $Y_{1}, Y_{2}, \ldots, Y_{T}$. For $t=T+m$, we have

$$
Y_{T+m}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{T+m-j} .
$$

Standing at origin T, the forecast $\hat{Y}_{T}(m)$ of Y_{T+m} is defined as a linear combination of current and previous shocks $\varepsilon_{t}, \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots$

$$
\hat{Y}_{T}(m)=\psi_{m}^{*} \varepsilon_{T}+\psi_{m+1}^{*} \varepsilon_{T-1}+\psi_{m+2}^{*} \varepsilon_{T-2}+\cdots
$$

where the weights $\psi_{m}^{*}, \psi_{m+1}^{*}, \psi_{m+2}^{*}, \ldots$ are to be determined. Then, the mean square error of the forecast is

$$
E\left[Y_{T+m}-\hat{Y}_{T}(m)\right]^{2}=\sigma_{\varepsilon}^{2} \sum_{j=0}^{m-1} \psi_{j}^{2}+\sigma_{\varepsilon}^{2} \sum_{j=0}^{\infty}\left[\psi_{m+j}-\psi_{m+j}^{*}\right]^{2},
$$

which is minimized when $\psi_{m+j}=\psi_{m+j}^{*}$. Hence,

$$
\hat{Y}_{T}(m)=\psi_{m} \varepsilon_{T}+\psi_{m+1} \varepsilon_{T-1}+\psi_{m+2} \varepsilon_{T-2}+\cdots
$$

Since $E\left(\varepsilon_{T+m} \mid Y_{T}, Y_{T-1}, Y_{T-2}, \ldots\right)=0, j>0$, then the minimum mean square error forecast of Y_{T+m} is the conditional expectation. That is

$$
\hat{Y}_{T}(m)=\psi_{m} \varepsilon_{T}+\psi_{m+1} \varepsilon_{T-1}+\psi_{m+2} \varepsilon_{T-2}+\cdots=E_{T}\left(Y_{T+m}\right)
$$

Forecasting

The forecast error for lead time m is

$$
e_{T}(m)=Y_{T+m}-\hat{Y}_{T}(m)=\sum_{j=0}^{m-1} \psi_{j} \varepsilon_{T+m-j}
$$

Since $E_{T}\left[e_{T}(m)\right]=0$, the variance of the forecast error is

$$
\operatorname{Var}\left[e_{T}(m)\right]=\sigma_{\varepsilon}^{2} \sum_{j=0}^{m-1} \psi_{j}^{2}
$$

Assuming the normality of ε 's, the forecast limits are

$$
Y_{T}(m) \pm \boldsymbol{z}_{\alpha / 2}\left[1+\sum_{j=0}^{m-1} \psi_{j}^{2}\right]^{1 / 2} \sigma_{\varepsilon}
$$

where $\boldsymbol{Z}_{\alpha / 2}$ is the standard normal deviate such that $P\left(\boldsymbol{Z}>\boldsymbol{Z}_{\alpha / 2}\right)=\alpha / 2$.

Find the m-step ahead forecast $\hat{Y}_{T}(m)$, the forecast error and the variance of the forecast error for $\operatorname{AR}(1), M A(1)$ and $\operatorname{ARMA}(1,1)$ models

Forecasting

Example: 1-Year US Treasury Bill - Static Forecasting

ARIMA($0,1,2$) model $\log (\mathrm{TB} 1 \mathrm{YR})$ series

Forecast: TB1YRF

Actual: TB1YR
Forecast sample: 1999Q2 2001Q1
Included observations: 8
Root Mean Squared Error 0.467643
Mean Absolute Error 0.322565
Mean Abs. Percent Error 6.540790
Theil Inequality Coefficient 0.043831
Bias Proportion 0.007367
Variance Proportion 0.006927
Covariance Proportion 0.985705

ARIMA(2,1,0) model $\log (\mathrm{TB} 1 \mathrm{YR})$ series

[^2]
Forecasting

Example: 1-Year US Treasury Bill - Dynamic Forecasting

ARIMA($0,1,2$) model $\log ($ TB1YR) series

ARIMA(2,1,0) model $\log (T B 1 Y R)$ series

Forecast: TB1YRF
Actual: TB1YR
Forecast sample: 1999Q2 2001Q1
Included observations: 8
Root Mean Squared Error 0.883607
Mean Absolute Error 0.740036
Mean Abs. Percent Error 13.18370
Theil Inequality Coefficient 0.089116
Bias Proportion 0.609898
Variance Proportion 0.351946
Covariance Proportion 0.038155

Forecast: TB1YRF	
Actual: TB1YR	
Forecast sample: 1999Q2 2001Q1	
Included observations: 8	
Root Mean Squared Error	0.861252
Mean Absolute Error	0.717839
Mean Abs. Percent Error	12.78505
Theil Inequality Coefficient	0.086577
\quad Bias Proportion	0.582794
\quad Variance Proportion	0.366424
\quad Covariance Proportion	0.050782

Forecast: TB1YRF
Actual: TB1YR
Forecast sample: 1999Q2 2001Q1
Root Mean Squared Error 0.861252
Mean Absolute Error
Mean Abs. Percent Error
efficien 0.086577 0.582794

Variance Proportion 0.366424
Covariance Proportion 0.050782

Forecasting

Example: 1-Year US Treasury Bill
Forecasts for $\mathrm{h}=1,2,3$ and 4 steps ahead and 95% forecast limits ARIMA(0,1,2) model

Exercises

1. Consider the quarterly unemployment rate (URATE) in U.S. between 1960:Q1 and 2008:Q1 (193 obs.) given in the EViews file "data_financial_econ.wk1" (Sheet 'Quarterly_US').
a) Describe the time plot. Do the data need transformation?
b) Identify a couple of ARIMA models that might be appropriate for the series.
c) Fit your best ARIMA model and carry out diagnostic checking on the residuals.
d) Produce forecasts for the next 4 periods using your preferred model.
e) Find the 95% forecast limits for forecasts in (d).
2. Consider the model

$$
\left(1-B^{4}\right)(1-B) Y_{t}=(1-0.2 B)\left(1-0.6 B^{4}\right) \varepsilon_{t}
$$

where ε_{t} is white noise. Find the eventual forecast function that generates the forecasts.

Exercises

3. Let Y_{t} be a stationary zero-mean process. Consider the models

$$
X_{t}=(1-0.4 B) Y_{t} \quad \text { and } \quad W_{t}=(1-2.5 B) Y_{t}
$$

a) Find the autocovariance generating functions of X_{t} and W_{t}.
b) Show that ACF of the above processes are identical.
4. Consider the $\operatorname{ARIMA}(0,2,3)$ model.
a) Write the model in terms of the backshift operator and without using the backshift operator.
b) Find the eventual forecast function.
5. Consider the $\operatorname{ARIMA}(0,1,1)$ model. Show that

$$
\operatorname{Var}\left[e_{t}(m)\right]=\sigma_{\varepsilon}^{2}\left[1+(m-1)(1-\theta)^{2}\right]
$$

Exercises

6. Consider the model

$$
(1-0.2 B)(1-B) Y_{t}=(1-0.8 B) \varepsilon_{t}
$$

where $\sigma_{\varepsilon}^{2}=4$. Suppose we have the observations $Y_{49}=30, Y_{48}=25$ and $\varepsilon_{49}=-2$. Compute the forecast $\hat{Y}_{49}(m)$, for $m=50,51,52$ and 53 .
7. Consider the $\mathrm{AR}(2)$ model

$$
\left(1-0.3 B-0.6 B^{2}\right) Y_{t}=\varepsilon_{t}
$$

a) Find the MA representation of this model.
b) Find the PACF.
8. Consider the model

$$
Y_{t}=2+1.3 Y_{t-1}-0.4 Y_{t-2}+\varepsilon_{t}+\varepsilon_{t-1}
$$

a) Find the mean of Y_{t}.
b) Is the model invertible?

Exercises

9. Consider the model:

$$
Y_{t}=2+\varepsilon_{t}-0.6 \varepsilon_{t-1}, \text { with } \sigma_{\varepsilon}=0.1
$$

a) Find the eventual forecast function.
b) Find the variance of the forecast error.
10. Consider the ARMA $(1,1)$ model. Show that

$$
\operatorname{Var}\left[e_{t}(m)\right]=\sigma_{\varepsilon}^{2}\left(1+\sum_{j=1}^{m-1} \phi^{2(j-1)}(\phi-\theta)^{2}\right)
$$

11. Consider the $\operatorname{SARIMA}(0,1,1)(0,1,1)_{12}$ model

$$
(1-B)\left(1-B^{12}\right) Y_{t}=\left(1-\theta_{1} B\right)\left(1-\Theta_{1} B^{12}\right) \varepsilon_{t}
$$

a) Write the model without using the backshift operator.
b) Suppose that $\theta_{1}=0.33$ e $\Theta_{1}=0.82$. Find the eventual forecast function.

[^0]: Path = g:\pen\bna\bna_r7_janeiro2015\timberlake_r7 DB = none WF = dados_st

[^1]: Path $=$ e: $\backslash p e n \backslash b n a \backslash b n a _$r7_janeiro2015\timberlake_r7 \quad DB $=$ none \quad WF $=$ dados_st

[^2]: Forecast: TB1YRF
 Actual: TB1YR
 Forecast sample: 1999Q2 2001Q1
 Included observations: 8
 Root Mean Squared Error 0.476301
 Mean Absolute Error 0.315519
 Mean Abs. Percent Error 6.439636
 Theil Inequality Coefficient 0.044692
 Bias Proportion 0.004036

 Variance Proportion 0.015674
 Covariance Proportion 0.980290

