Forecasting Methods Master in MQDEE

Jorge Caiado CEMAPRE/ISEG, University of Lisbon Email: jcaiado@iseg.ulisboa.pt Web: http://jcaiado100.wixsite.com/jorgecaiado

Introduction to Forecasting Methods

Time Series Analysis

Definition of time series

A **time series** is a sequence of observations over time. For example: monthly sales of new one-family houses; Daily stock indices; Weekly beer consumption; daily average temperature; Annual electricity production.

Linear trend model

A common feature of time series data is a trend. We can model and forecast the trend in a time series data using the following regression model (called "linear trend model"):

$$Y_t = b_0 + b_1 t + \varepsilon_t$$

where t = 1, 2, ..., T (time) is the explanatory or predictor variable.

Example Figure below shows the estimated regression line of money stock M2 on time T (data from 1959:Q1 to 1995:Q4 in the US)

Log-linear trend model

Suppose we want to find out the growth rate of consumption (Y_t) in Portugal from 2000Q1 to 2017Q3. Let Y_0 be the initial value of the consumption (i.e, the value in the end of 1999Q4).

We may use the following compound interest formula

$$Y_t = Y_0(1+r)^t$$

where r is the compound rate of growth of Y. Taking the natural logarithm, we can write

$$\log Y_t = \log Y_0 + t \log(1+r)$$

Now letting $b_0 = \log Y_0$ and $b_1 = \log(1 + r)$, we can write it as

$$\log Y_t = b_0 + b_1 t$$

Adding the disturbance term we obtain the so-called log-linear trend model:

$$\log Y_t = b_0 + b_1 t + \varepsilon_t$$

How to interpret this model?

Dependent Variable: LOG(CONS) Method: Least Squares Date: 07/21/18 Time: 11:54 Sample: 2000Q1 2017Q3 Included observations: 71

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND+1	11.35948 0.005709	0.014669 0.000354	774.3708 16.12160	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.790214 0.787173 0.061151 0.258023 98.67260 259.9059 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quinr Durbin-Watso	ent var nt var iterion rion n criter. n stat	11.56500 0.132554 -2.723172 -2.659434 -2.697825 0.019370

Time series decomposition

We can think of a time series as containing four components: trend (T), cycle (C), seasonality (S) and noise or error (E).

For example, we may assume an additive model as follows:

 $Y_t = T_t + C_t + S_t + E_t$

or

Alternatively, we can write a multiplicative model as

or

The additive model is most appropriate if the magnitude of the seasonal fluctuations or the variation around the trend-cycle does not vary with the level of the time series.

$$Y_t = TC_t + S_t + E_t$$

$$Y_t = T_t \times C_t \times S_t \times E_t$$

$$Y_t = TC_t \times S_t \times E_t$$

Decomposition of additive time series

Decomposition of multiplicative time series

Seasonal Adjustment

Some economic time series observed at quarterly, monthly, weekly frequencies often exhibit cyclical seasonal movements that occur every quarter, month or week. For example, the monthly inflation rate in Angola reach a peak every December during Christmas period.

Seasonal adjustment

remove the cyclical seasonal movements from a series.

Moving average methods:

- Additive decomposition
- Multiplicative decomposition

The **seasonal period** is denoted by *s* (e.g., s=4 for quarterly data, s=12 for monthly data, s=7 for daily data with a weekly pattern)

Multiplicative decomposition: $Y_t = TC_t \times S_t \times E_t$

Step1: Compute the trend-cycle component using a centered moving average as

$$\widehat{TC}_t = (0.5Y_{t-6} + \dots + Y_t + \dots + 0.5Y_{t+6})/12$$
 if $s = 12$ (monthly)

or

$$\widehat{TC}_t = (0.5Y_{t-2} + Y_{t-1} + Y_t + Y_{t+1} + 0.5Y_{t+2})/4$$
 if $s = 4$ (quarterly)

Step 2: Calculate the detrended series: Y_t/\widehat{TC}_t

Step 3: Estimate the seasonal components for each month or quarter, averaging the detrended values for that month or quarter. Then adjust the **seasonal indices so that they add to** *s*:

$$\hat{S}_m = i_m / \sqrt[12]{i_1 i_2 \cdots i_{12}}$$
 if $s = 12$ (monthly)

or

$$\hat{S}_q = i_q / \sqrt[12]{i_1 i_2 i_3 i_4}$$
 if $s = 4$ (quarterly)

Step 4: The seasonally adjusted series is obtained by **dividing** Y_t by the seasonal factors S_j . This gives Y_t^{SA} .

Step 5: The remainder component is calculated by **dividing** out the estimated seasonal and trend-cycle components: $\hat{E}_t = Y_t / (TC_t \times \hat{S}_t)$

Example 17.1. Figure below shows the result of multiplicative decomposition the wine consumption in Australia from January 1980 to July 1995.

EVIEWS: Proc/Seasonal Adjustment/Moving average methods/Ratio to moving average

Date: 07/21/18 Time: 19:15 Sample: 1980M01 1995M07 Included observations: 187 Ratio to Moving Average Original Series: WINE Adjusted Series: WINESA

Scaling Factors:

1	0.545133
2	0.735193
3	0.882675
4	0.963865
5	1.087376
6	1.122619
7	1.396486
8	1.365222
9	1.078535
10	0.973587
11	1.063142
12	1.128828

Additive decomposition $Y_t = TC_t + S_t + E_t$

Step1: Compute the trend-cycle component using a centered moving average as

$$\widehat{TC}_t = (0.5Y_{t-6} + \dots + Y_t + \dots + 0.5Y_{t+6})/12$$
 if $s = 12$ (monthly)

or

$$\widehat{TC}_t = (0.5Y_{t-2} + Y_{t-1} + Y_t + Y_{t+1} + 0.5Y_{t+2})/4$$
 if $s = 4$ (quarterly)

Step 2: Calculate the detrended series: $Y_t - \widehat{TC}_t$

Step 3: Estimate the seasonal components for each month or quarter, averaging the detrended values for that month or quarter. Then adjust the **seasonal indices so that they add up to zero:**

or

$$\hat{S}_m = i_m - (i_1 + i_2 + \dots + i_{12})/12$$
 if $s = 12$ (monthly)
 $\hat{S}_q = i_q - (i_1 + i_2 + i_3 + i_4)/4$ if $s = 4$ (quarterly)

Step 4: The seasonally adjusted series is obtained by **subtracting** Y_t by the seasonal factors S_j . This gives Y_t^{SA} .

Step 5: The remainder component is calculated by **subtracting** the estimated seasonal and trend-cycle components: $\hat{E}_t = Y_t - \hat{TC}_t - \hat{S}_t$

Other seasonal adjustment procedures: X12 ARIMA, STL and TRAMO/SEATS

Example: The data below represent the monthly sales of houses in Ohio (US) from January 1987 to November July 1994 (EViews file: dataforecasting.wk1; page=house)

Plot the time series. Are there any seasonal fluctuations? Use additive decomposition to estimate the trend-cycle, seasonal indices and error component.

Date	Sales	Date	Sales	Date	Sales	Date	Sales
1987M01	53	1989M01	52	1991M01	30	1993M01	44
1987M02	59	1989M02	51	1991M02	40	1993M02	50
1987M03	73	1989M03	58	1991M03	46	1993M03	60
1987M04	72	1989M04	60	1991M04	46	1993M04	66
1987M05	62	1989M05	61	1991M05	47	1993M05	58
1987M06	58	1989M06	58	1991M06	47	1993M06	59
1987M07	55	1989M07	62	1991M07	43	1993M07	55
1987M08	56	1989M08	61	1991M08	46	1993M08	57
1987M09	52	1989M09	49	1991M09	37	1993M09	57
1987M10	52	1989M10	51	1991M10	41	1993M10	56
1987M11	43	1989M11	47	1991M11	39	1993M11	53
1987M12	37	1989M12	40	1991M12	36	1993M12	51
1988M01	43	1990M01	45	1992M01	48	1994M01	45
1988M02	55	1990M02	50	1992M02	55	1994M02	58
1988M03	68	1990M03	58	1992M03	56	1994M03	74
1988M04	68	1990M04	52	1992M04	53	1994M04	65
1988M05	64	1990M05	50	1992M05	52	1994M05	65
1988M06	65	1990M06	50	1992M06	53	1994M06	55
1988M07	57	1990M07	46	1992M07	52	1994M07	52
1988M08	59	1990M08	46	1992M08	56	1994M08	59
1988M09	54	1990M09	38	1992M09	51	1994M09	54
1988M10	57	1990M10	37	1992M10	48	1994M10	57
1988M11	43	1990M11	34	1992M11	42	1994M11	45
1988M12	42	1990M12	29	1992M12	42		
							17

Forecast Evaluation

Suppose the forecast sample is T + 1, T + 2, ..., T + k and denote the actual value in period *t* as Y_t and the forecasted value as \hat{Y}_t .

The three most commonly used forecast accuracy measures are:

 $RMSE = (1/k) \sum_{t=T+1}^{T+k} (Y_t - \hat{Y}_t)^2$ (Root Mean Squared Error)

 $MAE = 1/k) \sum_{t=T+1}^{T+k} |Y_t - \hat{Y}_t|$ (Mean Absolute Error)

 $MAPE = 1/k) \sum_{t=T+1}^{T+k} \left| \frac{Y_t - \hat{Y}_t}{Y_t} \right| \times 100$ (Mean Absolute Percentual Error)

Exponential Smoothing

Exponential smoothing methods compute forecasts as weighted averages of past observations, with the weights decaying exponentially as the observation get older.

Single smoothing

The single exponential method is appropriate for forecasting series with no trend or seasonal pattern.

Forecast at time t + 1: $\hat{Y}_{t+1} = \alpha Y_t + (1 - \alpha)\hat{Y}_t$, where $0 \le \alpha \le 1$ is the damping or smoothing parameter.

By repeated substitutions, we obtain

$$\hat{Y}_{t+1} = \sum_{j=0}^{T-1} \alpha (1-\alpha)^j Y_{t-j}$$

The forecast equation of single exponential method is given by:

$$\hat{Y}_{T+k} = \hat{Y}_T$$
 for all $k > 0$

Initialization: We may use $\hat{Y}_2 = Y_1$ or the mean of the initial observations of Y_t . EViews uses the mean of the initial (T + 1)/2 observations of Y_t to start the recursion.

Example: The figure below is a plot of the population in Portugal from 1966 to 1998 (Source: INE).

Date: 08/02/18 Time: 21:44 Sample: 1966 1998 Included observations: 33 Method: Single Exponential Original Series: POPUL Forecast Series: POPULSM		
Parameters: Alpha Sum of Squared Residuals Root Mean Squared Error	0.9990 0.790758 0.154798	
End of Period Levels: Mean	9.969970	

Optimal α RMSE=0.155

Date: 08/02/18 Time: 21:46				
Sample: 1966 1998				
Included observations: 33				
Method: Single Exponential				
Original Series: POPUL				
Forecast Series: POPULSM1				
Parameters: Alpha	0.1000			
Sum of Squared Residuals 3.902201				
Root Mean Squared Error	0.343873			
End of Period Levels: Mean	9.838343			

α=0.1 RMSE = 0.344

Double Smoothing

It is appropriate for series with a linear trend

The double smoothing method involves the following recursion equations:

$$S_t = \alpha Y_t + (1 - \alpha)S_{t-1}$$
$$D_t = \alpha S_t + (1 - \alpha)D_{t-1}$$

where S_t is the single smoothed series, D_t is the double smoothed series, and $0 \le \alpha \le 1$ is the smoothing parameter. Forecasts are computed as:

$$\widehat{Y}_{T+k} = a_T + kb_T$$

where $a_T = 2S_t - D_t$ and $b_T = (S_t - D_t)\alpha/(1 - \alpha)$.

Initialization: $b_1 = (\sum_{t=m+1}^{2m} Y_t - \sum_{t=1}^{m} Y_t)/m^2$ (where *m* is an arbitrary number of observations) and $a_1 = (\sum_{t=1}^{m} Y_t)/m - b_1 \times (m+1)/2$.

Optimization: We choose the smoothing parameter α by minimizing the sum of squares of one-step-ahead forecast errors.

Example: To illustrate the application of double smoothing method, we forecast data on interest rate in Portugal from 2000q1 to 2017q3.

Exponential Smoothing	×
Smoothing method # of params Single 1 Double 1 Holt-Winters - No seasonal 2 Holt-Winters - Additive 3 Holt-Winters - Multiplicative 3	Smoothed series interesm Series name for smoothed and forecasted values.
Smoothing parameters Alpha: (mean) Beta: (trend) Gamma: (seasonal) E E Enter number between 0 and 1, or E to estimate. E	Estimation sample 2000q1 2017q3 Forecasts begin in period following estimation endpoint. Cycle for seasonal 4
ОК	Cancel

Sample: 2000Q1 2017Q3	ł			
Included observations: 7	1			
Method: Double Expone	ntial			
Original Series: INTERES	г			
Forecast Series: INTERES	м			
Parameters:	Alpha			0.9990
Sum of Squared Residuals				481412.8
Root Mean Squared Erro	r			82.34356
End of Period Levels:		Mean		7548 200
		Trend		-56.83361

Holt's Linear Trend

Holt (1957) extended simple exponential method to allow forecasting of data with a linear time trend (and no seasonal variation).

$$a_t = \alpha Y_t + (1 - \alpha)(a_{t-1} + b_{t-1})$$

$$b_t = \beta(a_t - a_{t-1}) + (1 - \beta)b_{t-1}$$

$$\hat{Y}_{t+k} = a_t + kb_t$$

where a_t denotes the level of the series at time *t*, b_t denotes the trend (or slope) of the series at time *t*, $0 \le \alpha \le 1$ and $0 \le \beta \le 1$ are the smoothing parameters.

Initialization: $b_1 = (\sum_{t=m+1}^{2m} Y_t - \sum_{t=1}^{m} Y_t)/m^2$ (where *m* is an arbitrary number of observations) and $a_1 = (\sum_{t=1}^{m} Y_t)/m - b_1 \times (m+1)/2$.

Optimization: We choose the smoothing parameter α by minimizing the sum of squares of one-step-ahead forecast errors.

Example: To illustrate the application of Holt's linear trend method, we forecast again data on interest rate in Portugal from 2000q1 to 2017q3.

Exponential Smoothing	×
Smoothing method # of params Single 1 Double 1 Holt-Winters - No seasonal 2 Holt-Winters - Additive 3 Holt-Winters - Multiplicative 2	Smoothed series interest_holt Series name for smoothed and forecasted values.
Smoothing parameters	Estimation sample
Alpha: E (mean) Enter number between 0 and 1, or E to estimate. (seasonal)	Forecasts begin in period following estimation endpoint. Cycle for seasonal 4
OK	Cancel

Sample: 2000Q1 2017Q3				
Included observat	tions: 71			
Method: Holt-Wi	nters No Seaso	onal		
Original Series: IN	TEREST			
Forecast Series: IN	NTEREST_HOL	т		
Parameters:	Alpha			1.0000
	Beta			1.0000
Sum of Squared Residuals			466952.1	
Root Mean Squar	ed Error			81.09741
End of Period Lev	els:	Mean		7548.200
		Trend		-56.80000

LISBON SCHOOL OF ECONOMICS & MANAGEMENT UNIVERSIDADE DE LISBOA

Holt-Winters additive method

This method is appropriate for series with a linear time trend and additive seasonal variation.

$$a_{t} = \alpha(Y_{t} - S_{t-s}) + (1 - \alpha)(a_{t-1} + b_{t-1})$$

$$b_{t} = \beta(a_{t} - a_{t-1}) + (1 - \beta)b_{t-1}$$

$$S_{t} = \gamma(Y_{t} - a_{t}) + (1 - \gamma)S_{t-s}$$

$$\hat{Y}_{t+k} = a_{t} + kb_{t} + S_{t+k-s}$$

where a_t denotes the level of the series at time *t*, b_t denotes of the trend (or slope) of the series at time *t*, S_t denotes the seasonal factor of the series, and *s* denotes the number of seasons in a year; $0 \le \alpha \le 1$, $0 \le \beta \le 1$ and $0 \le \gamma \le 1$ are the smoothing parameters.

Initialization: A common approach is to set

$$b_s = (\sum_{t=s+1}^{2s} Y_t - \sum_{t=1}^{s} Y_t)/s^2$$
, $a_s = (\sum_{t=1}^{s} Y_t)/s$ and $S_i = Y_i - a_s$, $i = 1, 2, ..., s$

<u>Optimization</u>: We choose the smoothing parameters (α , β and γ) by minimizing the sum of squares of one-step-ahead forecast errors.

Example: We employ the Holt-Winters with additive seasonality to forecast wine consumption in Australia for the period 1980m1 to 1995m7.

Date: 10/25/18 Tim Sample: 1980M01 1 Included observation Method: Holt-Winters Original Series: WIN Forecast Series: WI	e: 22:17 995M07 s: 187 s Additive Seasona E NESM	I	
Parameters: Alpha Beta Gam Sum of Squared Res Root Mean Squared	n ma iduals Error		0.1200 0.0000 0.4001 8078709. 207.8501
End of Period Levek	s: Mean Trend Seasonals:	1994M08 1994M09 1994M10 1994M11 1995M01 1995M02 1995M03 1995M04 1995M05 1995M06 1995M06	2637.784 8.530258 455.5493 55.46994 -164.2915 141.5148 285.5265 -1095.073 -622.1864 -128.7721 -24.76443 -38.46030 187.3407 948.1462

Holt-Winters multiplicative method

This method is appropriate for series with a linear time trend and multiplicative seasonal variation.

$$a_{t} = \alpha(Y_{t}/S_{t-s}) + (1 - \alpha)(a_{t-1} + b_{t-1})$$
$$b_{t} = \beta(a_{t} - a_{t-1}) + (1 - \beta)b_{t-1}$$
$$S_{t} = \gamma(Y_{t}/a_{t}) + (1 - \gamma)S_{t-s}$$

$$\hat{Y}_{t+k} = (a_t + kb_t)S_{t+k-s}$$

where a_t denotes the level of the series at time *t*; b_t denotes of the trend (or slope) of the series at time *t*; S_t denotes the seasonal factor of the series, and *s* denotes the number of seasons in a year; $0 \le \alpha \le 1$, $0 \le \beta \le 1$ and $0 \le \gamma \le 1$ are the smoothing parameters.

Initialization: A common approach is to set $b_s = (\sum_{t=s+1}^{2s} Y_t - \sum_{t=1}^{s} Y_t)/s^2$, $a_s = (\sum_{t=1}^{s} Y_t)/s$ and $S_i = Y_i/a_s$, i = 1, 2, ..., s

<u>Optimization</u>: We choose the smoothing parameters (α , β and γ) by minimizing the sum of squares of one-step-ahead forecast errors.

Example: EViews file data-forecasting.wk1 contains the monthly air passengers in the US (page: passengers) for the period 1949m1 to 1960m12.

- a) Plot the series and describe the main features of the series
- b) Forecast the next two years using Holt-Winters multiplicative method.
- c) Forecast the next two years using Holt-Winters additive method.
- d) Report and compare the RMSE of the one-step ahead forecasts from the two approaches.

Linear Time Series Models

Stationarity

Definitions:

A **stochastic process** is a family of time indexed random variables, Z(w,t): $t=0,\pm 1,\pm 2,...,$ where w is the sample space and t is the index set. A time series is a realization (or sample function) from a certain stochastic process, *Yt*, t=1,2,...,n.

A process *Yt*, t=1,2,...,n is said to be **weakly stationary** if it has constant mean, constant variance, and the covariance and the correlation between *Yt* and *Yt+k* depend only on time difference *k*.

$$\begin{split} \mu_t &= E(\mathsf{Y}_t) = \mu \,, \\ \sigma_t^2 &= Var(\mathsf{Y}_t) = E(\mathsf{Y}_t - \mu_t)^2 = \sigma^2 \,, \\ \gamma(t_1, t_2) &= E(\mathsf{Y}_{t_1} - \mu_{t_1})(\mathsf{Y}_{t_2} - \mu_{t_2}) = \gamma(t_1 + k, t_2 + k) \,, \,\,\forall t_1, t_2, k \\ \rho(t_1, t_2) &= \frac{\gamma(t_1, t_2)}{\sqrt{\sigma_{t_1}^2}\sqrt{\sigma_{t_2}^2}} = \rho(t_1 + k, t_2 + k) \,, \,\,\forall t_1, t_2, k \,\,, \end{split}$$

Stationary?

Autocorrelation

The autocovariance function (ACOVF) and autocorrelation function (ACF) represent the covariance and correlation between Yt and Yt+k, from the same process Y separated only by k time lags.

$$\gamma_{k} = Cov(\mathbf{Y}_{t}, \mathbf{Y}_{t+k}) = E[(\mathbf{Y}_{t} - \mu)(\mathbf{Y}_{t+k} - \mu)] \qquad \rho_{k} = \frac{Cov(\mathbf{Y}_{t}, \mathbf{Y}_{t+k})}{\sqrt{[Var(\mathbf{Y}_{t})][Var(\mathbf{Y}_{t+k})]}} = \frac{\gamma_{k}}{\gamma_{0}}$$

The autocovariance function and the autocorrelation function have the following properties:

1)
$$\gamma_0 = Var(Y_t); \ \rho_0 = 1;$$

2) $|\gamma_k| \le \gamma_0; \ |\rho_k| \le 1;$
3) $\gamma_k = \gamma_{-k}; \ \rho_k = \rho_{-k}$ for all *k*;

Partial autocorrelation

The partial autocorrelation function (PACF) measures the correlation between Y_t and Y_{t-k} , when the effects of intervening variables Y_{t-1} , Y_{t-2} , ..., Y_{t-k+1} are removed. The partial autocorrelation coefficient of order k is denoted by ϕ_{kk} and can be derived by regressing Y_{t+k} against Y_{t+k-1} , Y_{t+k-2} , ..., Y_t :

$$\mathbf{Y}_{t+k} = \phi_{k1}\mathbf{Y}_{t+k-1} + \phi_{k2}\mathbf{Y}_{t+k-2} + \dots + \phi_{kk}\mathbf{Y}_t + \mathbf{e}_{t+k} \,.$$

Multiplying Y_{t+k-j} on both sides of the equation and taking expected values, we get

$$\phi_{11} = \rho_1, \ \phi_{22} = \frac{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & \rho_2 \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{vmatrix}, \ \phi_{33} = \frac{\begin{vmatrix} 1 & \rho_1 & \rho_1 \\ \rho_1 & 1 & \rho_2 \\ \rho_2 & \rho_1 & \rho_3 \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 & \rho_2 \\ \rho_1 & 1 & \rho_1 \\ \rho_2 & \rho_1 & 1 \end{vmatrix}, \ \dots, \ \phi_{kk} = \frac{\begin{vmatrix} 1 & \rho_1 & \rho_2 \\ \rho_1 & 1 & \rho_1 \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_1 \\ \rho_1 & 1 & \rho_1 & \cdots & \rho_{k-3} & \rho_{k-2} \\ \rho_1 & 1 & \rho_1 & \cdots & \rho_{k-3} & \rho_{k-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_1 & 1 \end{vmatrix}$$

White noise

A process is called a "white noise" process if it is a sequence of uncorrelated random variables:

$$Y_t = \varepsilon_t$$
,

where ε_t has constant mean $E(\varepsilon_t) = \mu_{\varepsilon}$ (usually assumed to be 0), constant variance $Var(\varepsilon_t) = \sigma_{\varepsilon}^2$ and null covariance $Cov(\varepsilon_t, \varepsilon_{t-k}) = 0$ for all $k \neq 0$. The ACF and PACF of a white noise process are null for all $k \neq 0$.

Simulation of a white noise process with zero mean and unit variance

Sample ACF and PACF

For a given observed time series, Y_t , t = 1, 2, ..., n, the sample autocorrelation function (ACF) is defined as

$$\hat{\rho}_{k} = \frac{\hat{\gamma}_{k}}{\hat{\gamma}_{0}} = \frac{\sum_{t=k+1}^{n} (Y_{t} - \overline{Y})(Y_{t-k} - \overline{Y})}{\sum_{t=1}^{n} (Y_{t} - \overline{Y})^{2}}, \quad k = 0, 1, 2, \dots$$

The sample partial autocorrelation function (PACF) is obtained by a recursive method as follows:

$$\hat{\phi}_{kk} = \frac{\hat{\rho}_k - \sum_{j=1}^{k-1} \hat{\phi}_{k-1,j} \hat{\rho}_{k-j}}{1 - \sum_{j=1}^{k-1} \hat{\phi}_{k-1,j} \hat{\rho}_j},$$

with $\hat{\phi}_{11} = \hat{\rho}_1$ and $\hat{\phi}_{kj} = \hat{\phi}_{k-1,j} - \hat{\phi}_{kk} \hat{\phi}_{k-1,k-j}, \ j = 1,2,..., k-1.$

Backshift notation

A very useful notation in time series analysis is the backshift operator *B*, which is used as follows:

$$BY_t = Y_{t-1}$$

In other words, *B* has the effect of shifting the data back one period. For *k* periods, the notation is

$$B^k Y_t = Y_{t-k} .$$

For monthly data, B^{12} is used to shift attention to the same month last year, $B^{12}Y_t = Y_{t-12}$. For quarterly data, the backshift operator is used as follows: $B^4Y_t = Y_{t-4}$.

$MA(\infty)$ representation

The process Y_t can be expressed as a linear combination of a sequence of uncorrelated random variables:

$$\mathbf{Y}_t = \mathbf{\varepsilon}_t + \mathbf{\psi}_1 \mathbf{\varepsilon}_{t-1} + \mathbf{\psi}_2 \mathbf{\varepsilon}_{t-2} + \dots = \sum_{j=0}^{\infty} \mathbf{\psi}_j \mathbf{\varepsilon}_{t-j},$$

where $\psi_0 = 1$, ε_t is a zero mean white noise with constant variance and $\sum_{j=0}^{\infty} \psi_j^2 < \infty$.

It can be shown that

$$E(Y_t) = 0, \quad Var(Y_t) = \sigma_{\varepsilon}^2 \sum_{j=0}^{\infty} \psi_j^2, \quad E(\varepsilon_t Y_{t-k}) = \begin{cases} \sigma_{\varepsilon}^2, & k = 0\\ 0, & k > 0, \end{cases}$$

and
$$\rho_k = \frac{\gamma_k}{\gamma_0} = \frac{E(Y_t Y_{t+k})}{Var(Y_t)} = \frac{\sum_{j=0}^{\infty} \psi_j \psi_{j+k}}{\sum_{j=0}^{\infty} \psi_j^2}$$

AR(∞) representation

Another useful form is to write Y_t in an autoregressive representation, as follows:

$$Y_t = \pi_1 Y_{t-1} + \pi_2 Y_{t-2} + \dots + \varepsilon_t = \sum_{j=1}^{\infty} \pi_j Y_{t-j} + \varepsilon_t,$$

or, equivalently,

 $\pi(B)Y_t = \varepsilon_t,$ where $\pi(B) = 1 - \pi_1 B - \pi_2 B^2 - \dots = 1 - \sum_{j=1}^{\infty} \pi_j B^j$ and $1 + \sum_{j=1}^{\infty} |\pi_j| < \infty$.

The finite-order representation of the autoregressive model described earlier, if only a finite number of π weights are nonzero, is given by

$$\mathbf{Y}_t = \phi_1 \mathbf{Y}_{t-1} + \dots + \phi_p \mathbf{Y}_{t-p} + \varepsilon_t \,,$$

where ε_t is a zero mean white noise series. Because $\sum_{j=1}^{\infty} |\pi_j| = \sum_{j=1}^{p} |\phi_j| < \infty$, the process is always invertible. To be stationaty, the roots of $(1 - \phi_1 B - \dots - \phi_p B^p) = 0$ must be outside of the unit circle.

AR(1) model

The first-order autoregressive model or AR(1) model is given by

$$Y_t = \phi Y_{t-1} + \varepsilon_t ,$$

where ε_t is a zero mean white noise series. The model is always invertible. To be stationary, the roots of $(1 - \phi B) = 0$ must be outside of the unit circle. Because the root $B = 1/\phi$, for a stationary model, we have $|\phi| < 1$.

ACF of AR(1): $Y_t = 0.7Y_{t-1} + \varepsilon_t$

ACF and PACF of the simulated AR(1) models

PACF of AR(1): $Y_t = 0.7Y_{t-1} + \varepsilon_t$

AR(2) model The second-order autoregressive AR(2) models is $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t,$

or

 $\phi_2(B)Y_t = \varepsilon_t$,

where ε_t is a zero mean white noise series. To be stationary, the roots of $\phi_2(B) = 1 - \phi_1 B - \phi_2 B^2 = 0$ must be outside of the unit circle. Thus, we have the following necessary and sufficient conditions for stationarity:

 $\varphi_2+\varphi_1<1\land\varphi_2-\varphi_1<1\land-1<\varphi_2<1.$

The ACF tails off as an exponential decay or a damped sine waves depending on the roots of $\phi(B) = 0$, and the PACF cuts off after lag 2, $\phi_{kk} = 0$ for $k \ge 3$.

AR(p) model

More complicated conditions hold for AR(p) models with $p \ge 3$. Econometric software (EViews among others) takes care of this.

EViews						
File Edit Object View Proc Quick Options Window Help						
genr y=0 smpl 3 200 genr y=0.6*y(-1)+0.3*y(-2)+nmd smpl 1 200	Series: Y Workfile: AR2:: Untitled\					
piot y y.correl(20) Date: 22/01/09 Time: 15:50 Sample: 1 200 Included observations: 200						
View Proc Object Print Name AddText Line/Shade Remove Template Options Zoom	Autocorrelation Partial Correlation AC PAC Q-Stat Prob					
Y	1 0.831 0.831 140.29 0.000 2 0.741 0.160 252.21 0.000 1 3 0.622 0.92 331.67 0.000 1 4 0.533 -0.02 390.19 0.000 1 4 0.533 -0.02 331.67 0.000 1 4 0.533 -0.02 433.56 0.000 1 5 0.458 0.022 433.56 0.000 1 6 0.378 -0.051 463.25 0.000 1 6 0.176 -0.110 480.07 0.000 9 9.066 -0.199 487.00 0.000 1 10 -0.021 -0.041 487.10 0.000 1 12 -0.149 -0.008 493.83 0.000 1 12 -0.149 -0.008 493.83 0.000 1 13 -0.265 -0.052 547.57 0.000					
Date: 22/01/09 Time: 15:50	Path = c:\users\jorge\documents DB = none WF = ar2					

ACF and PACF of a simulated stationary AR(2) model: $Y_t = 0.6Y_{t-1} + 0.3Y_{t-2} + \varepsilon_t$

EViews					
File Edit Object View Proc Quick Options Window Help					
genr y=0					
genr y=0.7*y(-1)+0.4*y(-2)+nrnd	Series V. Workfile: AR2::NS				
smpl 1 200	View Proc Object Properties Print Name Freezel Sample Genr Greet Graph State Lide				
plot y v correl(20)	Correlouram of Y				
3.0010(20)	Dete: 20/04/00_Time: 46-00				
Grandy UNTITIED Worldfile: AR2::NS)	Sample: 1 200				
View Proc Object Drint Name AddText Line/Shade Demove Template Ontions Zoon	Included observations: 200				
(New) Proc (object) (Princ Maine) (Addrext) Energinade (Keindre) (Peinpace) Options (2001	Autocorrelation Partial Correlation AC PAC 0-Stat Prob				
Y					
2,400,000 -					
2,000,000 -	4 0.752 -0.001 579.59 0.000				
1,600,000 -					
	8 0.563 -0.001 912.63 0.000				
1,200,000 -	9 0.524 -0.001 970.63 0.000				
800,000 -					
400,000 -	14 0.362 -0.001 1164.0 0.000				
	15 0.336 -0.001 1188.7 0.000				
0					
-400,000					
25 50 75 100 125 150 175 200	20 0.228 -0.001 1269.5 0.000				
Ð	Path = c:\users\jorge\documents DB = none WF = ar2				

ACF and PACF of a simulated nonstationary AR(2) model: $Y_t = 0.7Y_{t-1} + 0.4Y_{t-2} + \varepsilon_t$

The finite-order representation of the moving average model described earlier, if only a finite number of ψ weights are nonzero, is given by

$$\mathbf{Y}_t = \mathbf{\varepsilon}_t - \mathbf{\theta}_1 \mathbf{\varepsilon}_{t-1} - \dots - \mathbf{\theta}_q \mathbf{\varepsilon}_{t-q} \,,$$

where ε_t is a zero mean white noise series. Because $1 + \theta_1^2 + \cdots + \theta_q^2 < \infty$, the process is always stationary. To be invertible, the roots of $(1 - \theta_1 B - \cdots - \theta_q B^q) = 0$ must be outside of the unit circle.

MA(1) model

The first-order moving average model or MA(1) model is

 $\mathbf{Y}_t = \mathbf{\varepsilon}_t - \mathbf{\theta}_1 \mathbf{\varepsilon}_{t-1},$

or

$$Y_t = \theta(B)\varepsilon_t$$
,

where $\theta(B) = 1 - \theta_1 B$ and ε_t is white noise. To be invertible, the root of $\theta(B) = 0$ must lie outside the unit circle. Thus, we require $|\theta_1| < 1$.

Simulated MA(1) models

ACF of MA(1): $Y_t = \varepsilon_t - 0.75\varepsilon_{t-1}$

PACF of MA(1): $Y_t = \varepsilon_t - 0.75\varepsilon_{t-1}$

ACF and PACF of simulated MA(1) models

MA(2) model

The second-order moving average MA(2) model is given by

 $Y_t = \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2},$

or

 $Y_t = \Theta_2(B)\varepsilon_t$,

where $\theta_2(B) = 1 - \theta_1 B - \theta_2 B^2$ and ε_t is white noise. To be invertible, the roots of $\theta_2(B) = 0$ must lie outside the unit circle. Hence, we have the following conditions:

 $\theta_2 + \theta_1 < 1 \land \theta_2 - \theta_1 < 1 \land -1 < \theta_2 < 1.$

ACF of the MA(2) model cuts off after lag 2 and PACF tails off as an exponential decay or a damped sine wave depending on the roots of $\theta_2(B) = 0$.

MA(q) model

More complicated conditions hold for MA(q) models with $q \ge 3$.

Econometric software (EViews among others) takes care of this.

File EViews						. 🗆 🗙
Simpl 1 100 Series y=0 series y=0 series e=nrnd smpl @first+2 @last y=e-0.7*e(-1)+0.25*e(-2) plot y y, correl(20)	Series: Y Workfile: MA2::Untitled\ View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph Stats Id Correlogram of Y Date: 24/01/09 Time: 17:03 Sample: 3 100					oh (Stats (Ider
Graph: UNTITLED Workfile: MA2::Untitled\	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
Y			1 -0.501 2 0.007 3 0.211 4 -0.223 5 0.125 6 0.010 7 -0.080 8 0.026 9 0.008 10 -0.036 11 -0.029 12 0.083 13 -0.094 14 -0.046 15 0.018 16 -0.055 17 0.011 16 -0.022 19 -0.000 20 0.009	-0.501 -0.326 0.078 -0.071 0.015 0.035 -0.001 -0.070 -0.031 -0.038 -0.1019 -0.036 -0.144 -0.184 -0.165 -0.143 -0.162 -0.119 -0.096	25.369 25.373 29.976 35.173 36.829 36.839 37.523 37.597 37.605 37.753 37.605 37.753 37.647 38.639 39.548 39.894 39.930 40.288 40.303 40.362 40.362 40.373	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.004
		Path = c:\users\jorg	e\document	s DB = I	none \	WF = ma2

ACF and PACF of the simulated MA(2) model: $Y_t = \varepsilon_t - 0.7\varepsilon_{t-1} + 0.25\varepsilon_{t-2}$

File Edit Object View Proc Quick Options Window Help smpl 1100 series y=0 series e=nmd smpl @first+2 @last y=e+0.75*e(-1)-0.3*e(-2) plot y y.correl(20) Image: Graph: UNTITLED_Workfile: MA2::Untitled1\ series 100 Image: Graph: UNTITLED_Workfile: MA2::Untitled1\
smpl 1 100 series y=0 series e=nmd smpl @first+2 @last y=e+0.75*e(-1)-0.3*e(-2) plot y y.correl(20) Image: Graph: UNTITLED_Workfile: MA2::Untitled1\ Image: Graph: UNTITLED_Workfile: MA2::Untitled1\
Series y=0 Series e=nmd Smpl @first+2 @last y=e+0.75*e(-1)-0.3*e(-2) plot y y.correl(20) Graph: UNTITLED_Workfile: MA2::Untitled1\
Smpl @first+2 @last y=e+0.75*e(-1)-0.3*e(-2) plot y y.correl(20) Graph: UNTITLED_Workfile: MA2::Untitled1\ Correlogram of Y Date: 24/01/09_Time: 17:11 Sample: 3 100 Included observations: 98
y=e+0.75*e(-1)=0.3*e(-2) ploty y.correl(20) Graph: UNTITLED_Workfile: MA2::Untitled1\
y.correl(20) Graph: UNTITLED_Workfile: MA2::Untitled1\ Graph: UNTITLED_Workfile: MA2::Untitled1\ Graph: UNTITLED_Workfile: MA2::Untitled1\
Graph: UNTITLED_Workfile: MA2::Untitled1\
Graph: UNITLED Workhile: MA2::Untitled1
Autocorrelation Partial Correlation AC PAC 0-Stat Pro
View]Proc_Object] [Print_Name] [AddText_Line/Shade] Remove] [Template_Options] Zor
Y 1 0.236 0.236 5.6506 0.0
3-, 5-0.014 0.058 21.428 0.0
6 -0.216 -0.274 26.415 0.0
יµיµיµיµיµיµיµיµיµיµיµיµיµיµיµיµיµיµיµ
-3
I I I I I I I I I I I I I I I I I I I
Path = c:\users\jorge\documents DB = none WF = ma

ACF and PACF of the simulated MA(2) model: $Y_t = \varepsilon_t + 0.75\varepsilon_{t-1} - 0.2\varepsilon_{t-2}$

ARMA(1,1) model

The mixed autoregressive and moving average ARMA(1,1) model includes the autoregressive AR(1) and moving average MA(1) models as special cases.

$$\mathbf{Y}_t = \mathbf{\phi} \mathbf{Y}_{t-1} + \mathbf{\varepsilon}_t - \mathbf{\theta} \mathbf{\varepsilon}_{t-1},$$

or

 $\phi(B)Y_t = \theta(B)\varepsilon_t,$

where $\phi(B) = 1 - \phi B$, $\theta(B) = 1 - \theta B$ and ε_t is white noise. To be stationary, the root of $\phi(B) = 0$ must lie outside the unit circle, i.e., $-1 < \phi < 1$. To be invertible, the root of $\theta(B) = 0$ must lie outside the unit circle, i.e., $-1 < \phi < 1$.

The ARMA(1,1) model can be written in a pure moving average representation as $Y_t = \psi(B)\varepsilon_t$,

where

$$\psi(B) = (1 + \psi_1 B + \psi_2 B^2 + \cdots) = \frac{1 - \Theta B}{1 - \phi B}.$$

The ARMA(1,1) model can be written in a pure autoregressive representation as $\pi(B)Y_t = \varepsilon_t$,

where

$$\pi(B) = 1 - \pi_1 B - \pi_2 B^2 - \dots = \frac{1 - \phi B}{1 - \theta B}.$$

Both the ACF and PACF of a mixed ARMA(1,1) model tail off as k incresaes, with its shape depending on the signs and magnitudes of ϕ and θ .

ARMA(p,q) model

The general mixed autoregressive and moving average ARMA(p,q) model is given by

$$\mathbf{Y}_{t} = \phi_{1}\mathbf{Y}_{t-1} + \dots + \phi_{p}\mathbf{Y}_{t-p} + \varepsilon_{t} - \theta_{1}\varepsilon_{t-1} - \dots - \theta_{q}\varepsilon_{t-q},$$

or

$$\phi_p(\boldsymbol{B})\boldsymbol{Y}_t = \boldsymbol{\theta}_q(\boldsymbol{B})\boldsymbol{\varepsilon}_t\,,$$

where $\phi_p(B) = 1 - \phi_1 B - \dots - \phi_p B^p$, $\theta_q(B) = 1 - \theta_1 B - \dots - \theta_q B^q$ and ε_t is white noise. To be stationary, the roots of $\phi_p(B) = 0$ must lie outside the unit circle. To be invertible, the roots of $\theta_q(B) = 0$ must lie outside the unit circle.

ACF and PACF of the ARMA(1,1) model: $Y_t = 0.85Y_{t-1} + \varepsilon_t + 0.5\varepsilon_{t-1}$

EViews						
File Edit Object View Proc Quick Options Window Help	(
series y=0	Series: Y Workfile: ARMA11::Untitled1\					
series e=nmd	[View]Proc[Object]Properties] Print[Name]Freeze] [Sample [Genr] Sheet]Graph]Stats]					
smpl @first+1 @last y = -0.4*y(-1) + e-0.7*e(-1)	Correlogram of Y					
ploty	Date: 25/01/09 Time: 17:57					
y.correl(20)	Sample: 2 200					
	Included observations: 199					
Vew Proc Object Print Name AddText Line/Shade Remove Template Options 7	Autocorrelation Partial Correlation AC PAC Q-Stat Prob					
Y	2 0.217 -0.446 102.25 0.000					
4	3 -0.005 -0.218 102.25 0.000					
	1 7 0.036 0.059 104.47 0.000					
	1 8 -0.068 0.046 105.44 0.000					
TAANAA MAANAA MAALAA						
• - • • • • • • • • • • • • • • • • • •						
. BE DED FOR AN PROPERTY OF THE REPORT OF A DEP FOR A DEP FO						
	■ · · · · · · · · · · · · · · · · · · ·					
-2-1						
-3-						
-4-	18 -0.024 0.100 145.07 0.000					
	19 -0.010 0.115 145.09 0.000					
	· · · · · · · · · · · · · · · · · · ·					
Sample: 2 200	Path = c:\users\jorge\documents DB = none WF = arma11					

ACF and PACF of the ARMA(1,1) model: $Y_t = -0.4Y_{t-1} + \varepsilon_t - 0.7\varepsilon_{t-1}$

Seasonal ARMA models

Seasonal autoregressive and moving average SARMA(P,Q)_s model The seasonal SARMA(P,Q)_s model is represented by

 $Y_t = \Phi_1 Y_{t-s} + \dots + \Phi_P Y_{t-Ps} + \varepsilon_t - \Theta_1 \varepsilon_{t-s} - \dots - \Theta_Q \varepsilon_{t-Qs} ,$

or

$$\Phi_{P}(\boldsymbol{B}^{s})Y_{t} = \Theta_{Q}(\boldsymbol{B}^{s})\varepsilon_{t},$$

where $\Phi_{P}(B^{s}) = 1 - \Phi_{1}B^{s} - \dots - \Phi_{P}B^{Ps}$, $\Theta_{Q}(B^{s}) = 1 - \Theta_{1}B^{s} - \dots - \Theta_{Q}B^{Qs}$ and ε_{t} is a zero mean white noise. To be stationary and invertible, the roots of $\Phi_{P}(B^{s}) = 0$ e $\Theta_{Q}(B^{s}) = 0$ must lie outside of the unit circle, respectively.

Both the ACF and PACF of the SARMA(P,Q)_s model exhibit exponential decays and damped sine waves at the seasonal lags.

Seasonal ARMA models

(ii) $(1-0.3B^4)Y_t = (1-0.4B^4 + 0.15B^8)\varepsilon_t$ (i) $(1 - 0.65B^{12})Y_t = (1 + 0.25B^{12})\varepsilon_t$ 2. 4. 2. -2 -4 60 20 40 80 160 180 20 40 60 120 200 80 100 120 140 160 180 200 140 Simulated SARMA $(1,1)_{12}$ and SARMA $(1,2)_4$ models

Seasonal ARMA models

ACF and PACF of simulated SARMA(1,1)₁₂ and SARMA(1,2)₄ models

General multiplicative ARMA models

If we combine non-seasonal ARMA(p,q) and seasonal SARMA(P,Q)_s models, we obtain a general multiplicative model of order $(p,q)\times(P,Q)_s$

$$(1 - \phi_1 B - \dots - \phi_p B^p)(1 - \Phi_1 B^s - \dots - \Phi_p B^{p_s})Y_t = (1 - \theta_1 B - \dots - \theta_q B^q)(1 - \Theta_1 B^s - \dots - \Theta_Q B^{Q_s})\varepsilon_t,$$

or

 $\phi_{\rho}(\boldsymbol{B}) \Phi_{\rho}(\boldsymbol{B}^{s}) Y_{t} = \theta_{q}(\boldsymbol{B}) \Theta_{Q}(\boldsymbol{B}^{s}) \varepsilon_{t} \,.$

ACF and PACF of a simulated SARMA(1,0)(1,0)₁₂ model: $(1-0.7B)(1+0.25B^{12})Y_t = \varepsilon_t$

Nonstationary model in the mean

The mean function of a nonstationary model can be represented essentially by two models: deterministic trend models and stochastic trend models.

For a deterministic trend model, one can use the linear trend model, $Y_t = a + bt + \varepsilon_t$ or the quadratic trend model, $Y_t = a + bt + ct^2 + \varepsilon_t$.

Differencing and stochastic trend model

The *d*th differenced series, for some integer $d \ge 1$, is given by $\nabla^d Y_t = (1-B)^d Y_t$.

For d = 1, we have first differences

 $\nabla Y_t = (1 - B)Y_t = Y_t - Y_{t-1}.$

For seasonal time series, we can use a sth seasonal differencing

$$\nabla^s \mathbf{Y}_t = (1 - \mathbf{B}^s) \mathbf{Y}_t = \mathbf{Y}_t - \mathbf{Y}_{t-s}.$$

Finally, a sth seasonal differencing of order *D*, for some integer $D \ge 1$ is given by $(\nabla^s)^D Y_t = (1-B^s)^D Y_t.$

Usually D = 1,2 is sufficient to obtain seasonal stationarity.

A special case of the nonstationary models is the stochastic trend model,

$$\mathbf{Y}_t = \mathbf{Y}_{t-1} + \mathbf{\varepsilon}_t$$

where ε_t is white noise. This is the so-called "random walk" model.

ACF and PACF of a simulated random walk model

Nonstationarity in the variance

Many time series are stationary in the mean but are nonstationary in the variance. To reduce this type of nonstationarity, we need variance stabilizing transformations such as the power transformation of Box-Cox (1964),

$$X_t = T(Y_t) = \begin{cases} Y_t^{\lambda}, & \lambda \neq 0\\ \log(Y_t), & \lambda = 0 \end{cases}$$

In practice, we fit the model to $Y_t^{(\lambda)} = \frac{Y_t^{\lambda} - 1}{\lambda \widetilde{Y}^{\lambda-1}}$, for various values of $\lambda \neq 0$, where \widetilde{Y} is the

geometric mean of the series Y_t , and choose the value of λ that results in the smallest

residual sum of squares. For $\lambda = 0$, we have $Y_t^{(0)} = \widetilde{Y} \log(Y_t)$.

Autoregressive integrated moving average (ARIMA) models

A general model for representing nonstationary nonseasonal time series is given by the autoregressive integrated moving average ARIMA(p,d,q) model

$$(1-\phi_1B-\cdots-\phi_pB^p)(1-B)^dY_t = (1-\theta_1B-\cdots-\theta_qB^q)\varepsilon_t$$

or

$$\phi_p(B)(1-B)^d Y_t = \theta_q(B)\varepsilon_t,$$

where $(1-B)^d$ is the differencing operator of order d, for $d \ge 1$, $\phi_p(B)$ is a stationary autoregressive (AR) operator, $\theta_q(B)$ is an invertible moving average (MA) operator and ε_r is a zero mean white noise.

Some important special cases of the ARIMA model are ARIMA(0,1,0), ARIMA(1,1,0), ARIMA(0,1,1) and ARIMA (1,1,1) models.

A simulated series from ARIMA(1,1,0) model: $(1-0,75B)(1-B)Y_t = \varepsilon_t$

ACF and PACF of the ARIMA(1,1,0) model: $(1-0.75B)(1-B)Y_t = \varepsilon_t$

Multiplicative autoregressive integrated moving average models

The multiplicative seasonal ARIMA model is an extension of the nonseasonal ARIMA model, by adding seasonal autoregressive and moving average factors. The model, often denoted as SARIMA $(p,d,q)(P,D,Q)_s$, is represented by

 $\phi_{\rho}(\boldsymbol{B})\Phi_{\rho}(\boldsymbol{B}^{s})(1-\boldsymbol{B})^{d}(1-\boldsymbol{B}^{s})^{D}\boldsymbol{Y}_{t}=\theta_{q}(\boldsymbol{B})\Theta_{Q}(\boldsymbol{B}^{s})\varepsilon_{t},$

where $\phi_{\rho}(B)$ and $\theta_{q}(B)$ are regular (nonseasonal) autoregressive and moving average factors, respectively, $\Phi_{\rho}(B^{s})$ and $\Theta_{Q}(B^{s})$ are seasonal autoregressive and moving average factors, respectively, and *s* is the seasonal period.

For example, consider the SARIMA(0,1,1)(0,1,1)₁₂ model $(1-B)(1-B^{12})Y_t = (1-\theta_1 B)(1-\Theta_1 B^{12})\varepsilon_t$

Steps for model identification

- Plot the time series and examine whether the series contains a trend, seasonality, ouliers, nonconstant variances and other nonstationary phenomena. Choose proper variance-stabilizing (Box-Cox's power transformation) and differencing transformations.
- Compute the sample ACF and the sample PACF of the original series and identify the degree of differencing d and D necessary to achieve stationarity. In practice, d and D are either 0, 1, or 2.
- Compute the sample ACF and the sample PACF of the transformed and differenced and identify the orders *p* and *q* for the regular autoregressive and moving average operators and the orders *P* and *Q* for the seasonal autoregressive and moving average operators, respectively. Usually, the needed orders of integers *p*, *q*, *P* and *Q* are less or equal to 3.

Unit Root Tests

Statistical tests to determine the required order of differencing

- Augmented Dickey-Fuller (ADF) test (most popular) Null hypothesis: The data are non-stationary and non-seasonal (φ=0) ∇Y(t) = φY(t-1) + b1 ∇Y(t-1)+ ... + ∇Y(t-p)
- Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test
 Null hypothesis: The data are stationary and non-seasonal
- Other tests: Phillipis-Perron (PP) test; Seasonal tests

Model	ACF	PACF
AR(p)	Tails off as exponential decay or damped sine wave	Cuts off after lag <i>p</i>
MA(q)	Cuts off after lag q	Tails off as exponential decay or damped sine wave
ARMA(p,q)	Tails off after lag (q-p)	Tails off after lag (q-p)
SAR(P)	Tails off as exponential decay or damped sine wave at the seasonal lags <i>s</i> , 2 <i>s</i> ,	Cuts off after lag <i>P×s</i>
SMA(Q)	Cuts off after lag Q× <i>s</i>	Tails off as exponential decay or damped sine wave at the seasonal lags <i>s</i> , 2 <i>s</i> ,
SARMA(P,Q)	Tails off as exponential decay or damped sine wave at the seasonal lags <i>s</i> , 2 <i>s</i> ,	Tails off as exponential decay or damped sine wave at the seasonal lags <i>s</i> , 2 <i>s</i> ,
SARMA(p,q)(P,Q)₅	Tails off as exponential decay or damped sine wave at the seasonal and nonseasonal	Tails off as exponential decay or damped sine wave at the seasonal and nonseasonal
	lags	lags

Example: 1-Year US Treasury Bill: Secondary Market Rate

😣 EViews	-		_		- 0	x		
File Edit Object Vi	ew Proc Quick O	ptions	Add-i	ns \	Window	Help		
Series: TB1YR Workfile: DADOS_ST::Money_demand\								
View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph								
Correlogram of TB1YR								
Date: 03/10/15 Time: 11:33 Sample: 1959Q1 2001Q1 Included observations: 167								
Autocorrelation	Partial Correlation	A	C P	AC	Q-Stat	Prob		
		1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0	.952 0. .891 -0. .850 0. .799 -0. .736 -0. .674 -0. .617 0. .576 0. .537 -0. .494 0. .458 -0.	.952 .163 .209 .218 .043 .043 .043 .043 .043 .043 .062 .015 .013	154.05 289.77 414.12 524.54 618.91 698.51 765.59 824.58 876.15 920.04 958.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		
		12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0	.427 -0. .396 0. .371 0. .343 -0. .317 0. .303 0. .290 -0. .271 -0. .258 0.	.021 .007 .035 .055 .045 .064 .015 .029 .035	991.19 1020.0 1045.4 1067.2 1085.9 1103.2 1119.2 1133.2 1146.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		
0			DB = n	ione	WF = da	ados_st		

Example: 1-Year US Treasury Bill: Secondary Market Rate

File Edit Object V	iew Proc Quick (Options Ac	Id-ins	Window	Help		
Series: TB1YR Wo	rkfile: DADOS_ST::Mo	ney_demand	ł		-		
View Proc Object Pro	operties Print Name	Freeze	mple	nr Sheet	Graph		
Correlogram of D(TB1YR)							
Date: 03/10/15 Tin Sample: 1959Q1 20 Included observation	ne: 11:36)01Q1 1s: 166						
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob		
		1 0.173 2 -0.230	0.173 -0.268	5.0790 14.087	0.024 0.001		
		3 0.107	0.226	16.036	0.001		
	יניי ו ו מו	5 -0 017	-0.040	18.044	0.001		
ומי		6 -0.065	-0.086	18.843	0.004		
		7 -0.192	-0.197	25.322	0.001		
		8 -0.014	0.064	25.357	0.001		
1 1 1 1	1 1011	9 0.042	-0.074	25.070	0.002		
		11 -0.053	-0.037	26.901	0.005		
1		12 -0.005	-0.016	26.905	0.008		
101		13 -0.057	-0.082	27.494	0.011		
1 🛛 1	ון ו	14 0.037	0.048	27.747	0.015		
		15 -0.024	-0.087	27.853	0.023		
91		16 -0.131	-0.077	31.067	0.013		
		18 0.071	0.009	31.068	0.020		
		19 -0 072	-0.062	33 006	0.022		
id i		20 -0.078	-0.056	34.169	0.025		
		DB	= none	WF = d	ados_st		
Model identification

Example: 1-Year US Treasury Bill - ARIMA(0,1,2) model

Box-Cox's power transformation on the 1-year Treasury Bill data

λ	Residual sum of squares
1	74.49
0.5	56.24
0	50.04
-0.5	52.04
-1	61.10

Model estimation

After identifying a tentative model, we need to estimate the parameters of the model.

We discuss two widely used estimation procedures:

 Maximum likelihood estimators (MLE) method The parameter values of the ARIMA model are obtained by minimizing the conditional log-likelihood function

$$\ln L_{*}(\phi, \theta, \sigma_{\varepsilon}) = -\frac{n}{2} \ln 2\pi \sigma_{\varepsilon}^{2} - \frac{S_{*}(\phi, \theta)}{2\sigma_{\varepsilon}^{2}}$$

where $S_*(\phi, \theta) = \sum_{t=p+1}^{n} \sigma_{\varepsilon}^2(\phi, \theta | \mathbf{Y})$ is the conditional sum of squares function.

Ordinary Least Squares (OLS) method
 OLS is the most commonly used regression method in data analysis.
 However, for ARMA(p,q) models, the OLS estimator will be inconsistent unless we
 have q=0. For more details, see Wei (2006).

Different software will give different estimates. We use the EViews software.

Model estimation

Example: 1-Year US Treasury Bill - ARIMA(0,1,2) model

😣 EViews			-		×
File Edit Object View	Proc Quick Op	tions Add-ins	Window Hel	р	
Equation: UNTITLED W	orkfile: DADOS_ST	::Money_demand	I\	_ 0	x
View Proc Object Print N	ame Freeze Esti	mate Forecast St	atsResids		
Dependent Variable: D Method: Least Squares Date: 10/03/15 Time: Sample (adjusted): 19 Included observations: Convergence achieved MA Backcast: 1959Q2	LOG(TB1YR) s 17:28 59Q4 2001Q1 166 after adju: J after 9 iteratio 1959Q3	stments ons			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	-
MA(1) MA(2)	0.355802 -0.147028	0.078533 0.078519	4.530635 -1.872511	0.0000 0.0629	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.129666 0.124359 0.096244 1.519111 154.0468 1.967360	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quir	dent var ent var riterion terion nn criter.	-0.000104 0.102851 -1.831889 -1.794395 -1.816670	
Inverted MA Roots	.24	60			
Path = g:\pen\b	na\bna_r7_janeiro	2015\timberlake_	r7 DB = none	WF = dado	s_st

Coefficient covariance matrix

	MA(1)	MA(2)
MA(1)	0.006167	0.002640
MA(2)	0.002640	0.006165

Model diagnostic checking

Check on whether a particular model is adequate or not. This involves:

Analysis of the quality of parameter estimates. Inspecting the statistical significance of individual parameter estimates provides some insight into the potential relative goodness of fit of the ARIMA model. To test the null hypothesis H₀: β_i = 0, we use the test statistic:

$$\left|t\right| = \left|\frac{\hat{\beta}_{i}}{\sigma_{\hat{\beta}_{i}}}\right| > t_{(n-m)} \Longrightarrow \operatorname{Reject} H_{0}: \beta_{i} = 0.$$

Check whether the residuals are approximately white noise. Compute the sample ACF and sample PACF of the residuals to check whether they are uncorrelated. Box and Pierce (1970) introduced a 'portmanteu' test to check the null hypothesis H₀: ρ₁ = ρ₂ = ··· = ρ_k = 0, with the test statistic

$$Q = n \sum_{j=1}^{k} \hat{\rho}_j^2 \,,$$

which is asymptotically distributed as χ^2 with k-m degrees of freedom, with m the number of estimated parameters.

Model diagnostic checking

Ljung e Box (1978) proposed a modified version of the statistic Q,

$$Q^* = n(n+2)\sum_{j=1}^k \frac{\hat{\rho}_j^2}{n-j}.$$

This modified form of the 'portmanteu' test statistic is much closer to the $\chi^2(k-m)$ distribution for typical sample sizes *n*. Thus, if the calculated Q * statistic exceeds the value $\chi^2(k-m)$ then the adequacy of the fitted ARMA model would be questionated.

Model diagnostic checking

Example: 1-Year US Treasury Bill ARIMA(0,1,2) model

😣 EViews				x
File Edit Object V	/iew Proc Quick (Options Add-ins	Window Help	
Equation: UNTITL	ED Workfile: DADOS_	ST::Money_deman	d\ _ 🗆	I X
View Proc Object	Print Name Freeze	stimate Forecast S	tats Resids	
	Correlogram o	of Residuals		_
Date: 02/12/15 Ti	mo: 10:22			
Sample: 1959Q1 2	001Q1			
Included observation	ns: 166			
Q-statistic probabil	ities adjusted for 2 A	RMA terms		
Autocorrelation	Partial Correlation	AC PAC	Q-Stat Prob	H
		1 -0 001 -0 00	1 0 0003	-
111	1 11	2 -0.016 -0.01	6 0.0429	
1 1 1	ի հեր	3 0.055 0.05	5 0.5639 0.453	
יםי	ים ו	4 0.107 0.10	8 2.5510 0.279	
10	ן וני	5 -0.064 -0.06	3 3.2694 0.352	
101	וןי	6 -0.047 -0.04	8 3.6467 0.456	
Q '	[]	7 -0.120 -0.13	7 6.1879 0.288	
1		8 0.013 0.00	7 6.2199 0.399	
101		9 -0.044 -0.02	9 6.5714 0.475	
	ן יקי	10 -0.125 -0.10	7 9.3644 0.312	
101		11 -0.039 -0.02	3 9.6430 0.380	
		12 0.023 0.00	3 9.7391 0.464	
	""	13 -0.097 -0.09	1 11.465 0.405	
		14 -0.015 -0.00	9 11.507 0.486	
		15 -0.024 -0.04	1 11.613 0.560	
		16 0.022 0.00	5 11.702 0.630	
		10 0.025 -0.03	/ 11.019 0.093 0 10.011 0.740	
		10 -0.032 -0.04	5 12.011 0.743	
		20 0.005 -0.04	4 12 042 0 845	
· · · ·	1 .4.	20 0.000 0.04	4 12.042 0.043	-
Path = e:\pen\bna\	bna_r7_janeiro2015\tin	nberlake_r7 DB =	none WF = dad	os_st

Model selection criteria

Selection criteria are based on summary statistics from residuals, computed from a fitted model (or on forecast errors calculated from out-of-sample forecasts).

Akaike Information Criteria (AIC)

Assume that a statistical model of m parameters is fitted to a given time series. Akaike (1974) introduced an information criterion defined as

$$AIC = -2InL + 2m,$$

where L is the maximum likelihood and n is the effective number of observations (or number of computed residuals from the series). The EViews software computes the AIC value as

$$AIC = n \ln \hat{\sigma}_{\hat{\epsilon}}^2 + 2m$$
,

where $\hat{\sigma}_{\epsilon}^2$ is the residual variance for the fitted model.

 Schwartz Bayesian criterion (SBC). Schwartz (1978) introduced the following Bayesian criterion of model selection:

$$SBC = n \ln \hat{\sigma}_{\epsilon}^2 + m \ln n$$
,

where $\hat{\sigma}_{\epsilon}^2$ is the residual variance for the fitted model, *m* is the number of parameters and *n* is the effective number of observations.

Model selection criteria

Example: 1-Year US Treasury Bill

AIC,	BIC	and	HQ	values	for	TB1	YR	models
------	-----	-----	----	--------	-----	-----	----	--------

	ARIMA(0,1,2)	ARIMA(2,1,0)
AIC	-1.832	-1.800
BIC	-1.794	-1.762
HQ	-1.817	-1.785

(🚯 EViews					x
	File Edit Object View	Proc Quick	Options A	dd-ins Wind	low Help	
	Equation: EQ01 Work	file: DADOS_ST	::Money_dem	and∖		x
	View Proc Object Print	Name Freeze	Estimate For	ecast Stats R	esids	
•	Dependent Variable: Dl Method: Least Squares Date: 03/12/15 Time: Sample (adjusted): 196 Included observations: Convergence achieved	LOG(TB1YR) 5 10:32 50Q2 2001Q1 164 after adju after 3 iteratio	stments ns			
1	Variable	Coefficient	Std. Error	t-Statistic	Prob.	
	AR(1) AR(2)	0.308580 -0.221910	0.077767 0.077722	3.968018 -2.855177	0.0001 0.0049	
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.107410 0.101900 0.097790 1.549176 149.5899 1.878307	Mean deper S.D. depend Akaike info Schwarz cri Hannan-Qui	ndent var dent var criterion terion nn criter.	7.87E-05 0.103188 -1.799876 -1.762073 -1.784530	
	Inverted AR Roots	.1545i	.15+.45i			
ľ	Path = e:\pen\bna\bna_	r7_janeiro2015	timberlake_r7	DB = none	WF = dado	s_st

🚱 EViews						x		
File Edit Object Vi	ew Proc Quick (Options A	dd-ins	Window	Help			
Equation: EQ01 W	/orkfile: DADOS_ST::N	loney_dem	and∖			x		
View Proc Object Pr	rint Name Freeze E	stimate Fo	ecast Sta	ts Resids				
	Correlogram o	of Residual	s	-				
Date: 03/12/15 Tim Sample: 1959Q1 20 Included observation Q-statistic probabilit	ne: 10:41 01Q1 is: 164 ies adjusted for 2 A	RMA term	s			•		
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Ε		
		1 0.03 2 -0.05 3 0.17 4 0.05 5 -0.05 6 -0.05 7 -0.11 8 -0.00 9 -0.04	7 0.037 7 -0.059 9 0.184 8 0.040 6 -0.039 0 -0.076 9 -0.144 1 0.018 7 -0.037	0.2227 0.7752 6.2051 6.7756 7.3063 7.7341 10.205 10.205 10.601	0.013 0.034 0.063 0.102 0.070 0.116 0.157			
		10 -0.14 11 -0.04 12 0.01 13 -0.10 14 -0.01 15 -0.02 16 0.01 17 -0.02 18 -0.03 19 -0.00 20 0.01	7 -0.095 1 -0.034 5 0.001 7 -0.082 6 -0.002 3 -0.053 0 0.016 5 -0.054 4 -0.039 3 -0.026 1 -0.029	14.415 14.714 14.756 16.820 16.865 16.964 16.981 17.097 17.315 17.316 17.339	0.072 0.099 0.141 0.155 0.201 0.257 0.313 0.366 0.433 0.500	*		
Path = e:\pen\bna\bna_r7_janeiro2015\timberlake_r7 DB = none WF = dados_st								

Suppose that at time t = T we have the observations Y_T , Y_{T-1} , Y_{T-2} , ...

The minimum mean square error forecast of future value Y_{T+m} is defined in terms of the conditional expectation as a linear function of current and previous observations Y_T , Y_{T-1} , Y_{T-2} , ...

$$\hat{Y}_{T}(m) = E_{T}(Y_{T+m}) = E(Y_{T+m} | Y_{T}, Y_{T-1}, Y_{T-2}, \ldots),$$

where $\hat{Y}_{T}(m)$ is the *m*-step ahead forecast of Y_{T+m} , *T* is the forecast *origin* and *m* is the *lead time* (or forecast horizon).

Forecasts for ARMA models

Consider the general stationary ARMA(p,q) model:

$$\phi(\boldsymbol{B})\boldsymbol{Y}_t = \boldsymbol{\theta}(\boldsymbol{B})\boldsymbol{\varepsilon}_t,$$

Because the model is stationary, it has an equivalent moving average representation

$$Y_t = \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \dots = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j} = \psi(B)\varepsilon_t,$$

where $\psi_0 = 1$, ε_t is white noise and $\psi(B) = \sum_{j=0}^{\infty} \psi_j B^j = \frac{\theta(B)}{\phi(B)}$.

Suppose we have the observations $Y_1, Y_2, ..., Y_T$. For t = T + m, we have

$$\mathsf{Y}_{T+m} = \sum_{j=0}^{\infty} \psi_j \varepsilon_{T+m-j} \ .$$

Standing at origin *T*, the forecast $\hat{Y}_{T}(m)$ of Y_{T+m} is defined as a linear combination of current and previous shocks $\varepsilon_t, \varepsilon_{t-1}, \varepsilon_{t-2}, \dots$

$$\hat{Y}_{T}(m) = \psi_{m}^{*}\varepsilon_{T} + \psi_{m+1}^{*}\varepsilon_{T-1} + \psi_{m+2}^{*}\varepsilon_{T-2} + \cdots$$

where the weights $\psi_m^*, \psi_{m+1}^*, \psi_{m+2}^*, \dots$ are to be determined. Then, the mean square error of the forecast is

$$E[Y_{T+m} - \hat{Y}_{T}(m)]^{2} = \sigma_{\varepsilon}^{2} \sum_{j=0}^{m-1} \psi_{j}^{2} + \sigma_{\varepsilon}^{2} \sum_{j=0}^{\infty} [\psi_{m+j} - \psi_{m+j}^{*}]^{2},$$

which is minimized when $\psi_{m+j} = \psi_{m+j}^*$. Hence,

$$\hat{Y}_{T}(m) = \Psi_{m}\varepsilon_{T} + \Psi_{m+1}\varepsilon_{T-1} + \Psi_{m+2}\varepsilon_{T-2} + \cdots$$

Since $E(\varepsilon_{T+m} | Y_T, Y_{T-1}, Y_{T-2}, ...) = 0, j > 0$, then the minimum mean square error forecast of Y_{T+m} is the conditional expectation. That is

$$\hat{Y}_{T}(m) = \psi_{m}\varepsilon_{T} + \psi_{m+1}\varepsilon_{T-1} + \psi_{m+2}\varepsilon_{T-2} + \cdots = E_{T}(Y_{T+m})$$

The forecast error for lead time m is

$$\mathbf{e}_{T}(m) = \mathbf{Y}_{T+m} - \hat{\mathbf{Y}}_{T}(m) = \sum_{j=0}^{m-1} \psi_{j} \varepsilon_{T+m-j} \ .$$

Since $E_{\tau}[e_{\tau}(m)] = 0$, the variance of the forecast error is

$$Var[e_{T}(m)] = \sigma_{\varepsilon}^{2} \sum_{j=0}^{m-1} \psi_{j}^{2}$$

Assuming the normality of ϵ 's, the forecast limits are

$$Y_{T}(\boldsymbol{m}) \pm \boldsymbol{z}_{\alpha/2} \left[1 + \sum_{j=0}^{m-1} \psi_{j}^{2} \right]^{1/2} \sigma_{\varepsilon},$$

where $z_{\alpha/2}$ is the standard normal deviate such that $P(Z > z_{\alpha/2}) = \alpha/2$.

Find the *m*-step ahead forecast $\hat{Y}_{T}(m)$, the forecast error and the variance of the forecast error for AR(1), MA(1) and ARMA(1,1) models

Example: 1-Year US Treasury Bill – Static Forecasting

Example: 1-Year US Treasury Bill – Dynamic Forecasting

Example: 1-Year US Treasury Bill Forecasts for h=1,2,3 and 4 steps ahead and 95% forecast limits ARIMA(0,1,2) model

1. Consider the quarterly unemployment rate (URATE) in U.S. between 1960:Q1 and 2008:Q1 (193 obs.) given in the EViews file "data_financial_econ.wk1" (Sheet 'Quarterly_US').

a) Describe the time plot. Do the data need transformation?

b) Identify a couple of ARIMA models that might be appropriate for the series.

c) Fit your best ARIMA model and carry out diagnostic checking on the residuals.

d) Produce forecasts for the next 4 periods using your preferred model.

e) Find the 95% forecast limits for forecasts in (d).

2. Consider the model

$$(1-B^4)(1-B)Y_t = (1-0.2B)(1-0.6B^4)\varepsilon_t$$

where ε_t is white noise. Find the eventual forecast function that generates the forecasts.

3. Let Y_t be a stationary zero-mean process. Consider the models

 $X_t = (1 - 0.4B)Y_t$ and $W_t = (1 - 2.5B)Y_t$

- a) Find the autocovariance generating functions of X_t and W_t .
- b) Show that ACF of the above processes are identical.
- **4.** Consider the ARIMA(0,2,3) model.
 - a) Write the model in terms of the backshift operator and without using the backshift operator.
 - b) Find the eventual forecast function.
- **5.** Consider the ARIMA(0,1,1) model. Show that $Var[e_t(m)] = \sigma_{\epsilon}^2 [1 + (m-1)(1-\theta)^2]$

6. Consider the model

 $(1-0.2B)(1-B)Y_t = (1-0.8B)\varepsilon_t$

where $\sigma_{\epsilon}^2 = 4$. Suppose we have the observations $Y_{49} = 30$, $Y_{48} = 25$ and $\epsilon_{49} = -2$. Compute the forecast $\hat{Y}_{49}(m)$, for m = 50, 51, 52 and 53.

7. Consider the AR(2) model

$$(1-0.3B-0.6B^2)Y_t = \varepsilon_t$$

- a) Find the MA representation of this model.
- b) Find the PACF.
- 8. Consider the model

$$Y_t = 2 + 1.3Y_{t-1} - 0.4Y_{t-2} + \varepsilon_t + \varepsilon_{t-1}$$

- a) Find the mean of Y_t .
- b) Is the model invertible?

9. Consider the model:

$$Y_t = 2 + \varepsilon_t - 0.6\varepsilon_{t-1}$$
, with $\sigma_{\varepsilon} = 0.1$

- a) Find the eventual forecast function.
- b) Find the variance of the forecast error.
- **10.** Consider the ARMA(1,1) model. Show that

$$Var[e_t(m)] = \sigma_{\varepsilon}^2 \left(1 + \sum_{j=1}^{m-1} \phi^{2(j-1)} (\phi - \theta)^2\right)$$

11. Consider the SARIMA $(0,1,1)(0,1,1)_{12}$ model

$$(1-B)(1-B^{12})Y_t = (1-\theta_1 B)(1-\Theta_1 B^{12})\varepsilon_t$$

- a) Write the model without using the backshift operator.
- b) Suppose that $\theta_1 = 0.33$ e $\Theta_1 = 0.82$. Find the eventual forecast function.