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Definition of time series

A time series is a sequence of observations over time. For example: monthly sales of

new one-family houses; Daily stock indices; Weekly beer consumption; daily average

temperature; Annual electricity production.

20

30

40

50

60

70

80

1987 1988 1989 1990 1991 1992 1993 1994

HOUSE

400

600

800

1,000

1,200

1,400

1,600

1,800

1993 1994 1995 1996 1997 1998 1999

BEER

Time Series Analysis



Time Series Analysis

3

0

100

200

300

400

500

600

700

49 50 51 52 53 54 55 56 57 58 59 60

PASSAG

0

100

200

300

400

500

600

700

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Means by Season

PASSAG by Season

Linear trend model 

A common feature of time series data is a trend. We can model and forecast the trend 

in a time series data using the following regression model (called “linear trend model”): 

𝑌𝑡 = 𝑏0 + 𝑏1𝑡 + 𝜀𝑡 

where 𝑡 = 1,2,… ,𝑇 (time) is the explanatory or predictor variable.  
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Example 16.1. Figure below shows the estimated regression line of money stock M2 

on time T (data from 1959:Q1 to 1995:Q4 in the US)   
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Log-linear trend model

Suppose we want to find out the growth rate of consumption (𝑌𝑡) in Portugal from 

2000Q1 to 2017Q3. Let  𝑌0 be the initial value of the consumption (i.e, the value in the 
end of 1999Q4).  
 
We may use the following compound interest formula   

𝑌𝑡 = 𝑌0(1 + 𝑟)𝑡  

where r is the compound rate of growth of  𝑌 . Taking the natural logarithm, we can 
write 

log𝑌𝑡 = log𝑌0 + 𝑡log(1 + 𝑟) 

Now letting 𝑏0 = log𝑌0 and 𝑏1 =  log(1 + 𝑟), we can write it as 
  

log𝑌𝑡 = 𝑏0 + 𝑏1𝑡 

Adding the disturbance term we obtain the so-called log-linear trend model:  

log𝑌𝑡 = 𝑏0 + 𝑏1𝑡 + 𝜀𝑡  
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CONS Dependent Variable: LOG(CONS)

Method: Least Squares

Date: 07/21/18   Time: 11:54

Sample: 2000Q1 2017Q3

Included observations: 71

Variable Coefficient Std. Error t-Statistic Prob.  

C 11.35948 0.014669 774.3708 0.0000

@TREND+1 0.005709 0.000354 16.12160 0.0000

R-squared 0.790214    Mean dependent var 11.56500

Adjusted R-squared 0.787173    S.D. dependent var 0.132554

S.E. of regression 0.061151    Akaike info criterion -2.723172

Sum squared resid 0.258023    Schwarz criterion -2.659434

Log likelihood 98.67260    Hannan-Quinn criter. -2.697825

F-statistic 259.9059    Durbin-Watson stat 0.019370

Prob(F-statistic) 0.000000How to interpret this model?
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Time series decomposition

We can think of a time series as containing four components: trend (T), cycle (C),

seasonality (S) and noise or error (E).

For example, we may assume an additive model as follows:

𝑌𝑡 = 𝑇𝑡 + 𝐶𝑡 + 𝑆𝑡 + 𝐸𝑡

or

𝑌𝑡 = 𝑇𝐶𝑡 + 𝑆𝑡 + 𝐸𝑡

Alternatively, we can write a multiplicative model as

𝑌𝑡 = 𝑇𝑡 × 𝐶𝑡 × 𝑆𝑡 × 𝐸𝑡
or

𝑌𝑡 = 𝑇𝐶𝑡 × 𝑆𝑡 × 𝐸𝑡

The additive model is most appropriate if the magnitude of the seasonal fluctuations or
the variation around the trend-cycle does not vary with the level of the time series.
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Seasonal Adjustment

Some economic time series observed at quarterly, monthly, weekly frequencies often

exhibit cyclical seasonal movements that occur every quarter, month or week. For

example, the monthly inflation rate in Angola reach a peak every December during

Christmas period.

Seasonal adjustment remove the cyclical seasonal movements from a series.

Moving average methods:

- Additive decomposition

- Multiplicative decomposition

The seasonal period is denoted by s (e.g., s=4 for quarterly data, s=12 for monthly

data, s= 7 for daily data with a weekly pattern)
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Multiplicative decomposition: 𝑌𝑡 = 𝑇𝐶𝑡 × 𝑆𝑡 × 𝐸𝑡

Step1: Compute the trend-cycle component using a centered moving average as

෢𝑇𝐶𝑡 = (0.5𝑌𝑡−6 +⋯+ 𝑌𝑡 +⋯+ 0.5𝑌𝑡+6)/12 if   𝑠 = 12 (monthly)

or
෢𝑇𝐶𝑡 = (0.5𝑌𝑡−2 + 𝑌𝑡−1 + 𝑌𝑡 + 𝑌𝑡+1 + 0.5𝑌𝑡+2)/4 if   𝑠 = 4 (quarterly)

Step 2: Calculate the detrended series:   𝑌𝑡/෢𝑇𝐶𝑡

Step 3: Estimate the seasonal components for each month or quarter, averaging the

detrended values for that month or quarter. Then adjust the seasonal indices so that

they add to 𝒔:

መ𝑆𝑚 = 𝑖𝑚/
12 𝑖1𝑖2⋯𝑖12 if   𝑠 = 12 (monthly)

or
መ𝑆𝑞 = 𝑖𝑞/

12 𝑖1𝑖2𝑖3𝑖4 if   𝑠 = 4 (quarterly)
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Step 4: The seasonally adjusted series is obtained by dividing 𝑌𝑡 by the seasonal factors

𝑆𝑗. This gives 𝑌𝑡
𝑆𝐴.

Step 5: The remainder component is calculated by dividing out the estimated seasonal

and trend-cycle components: ෠𝐸𝑡 = 𝑌𝑡/ ෢(𝑇𝐶𝑡 × መ𝑆𝑡)

Example 17.1. Figure below shows the result of multiplicative decomposition the wine

consumption in Australia from January 1980 to July 1995.

400

800

1,200

1,600

2,000

2,400

2,800

3,200

3,600

4,000

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

WINE

400

800

1,200

1,600

2,000

2,400

2,800

3,200

3,600

4,000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Means by Season

WINE by Season



Time Series Analysis

13

400

800

1,200

1,600

2,000

2,400

2,800

3,200

3,600

4,000

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

WINE

WINESA

Date: 07/21/18   Time: 19:15

Sample: 1980M01 1995M07

Included observations: 187

Ratio to Moving Average

Original Series: WINE

Adjusted Series: WINESA

Scaling Factors:

 1  0.545133

 2  0.735193

 3  0.882675

 4  0.963865

 5  1.087376

 6  1.122619

 7  1.396486

 8  1.365222

 9  1.078535

 10  0.973587

 11  1.063142

 12  1.128828

EVIEWS: Proc/Seasonal Adjustment/Moving

average methods/Ratio to moving average
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Additive decomposition 𝑌𝑡 = 𝑇𝐶𝑡 + 𝑆𝑡 + 𝐸𝑡

Step1: Compute the trend-cycle component using a centered moving average as

෢𝑇𝐶𝑡 = (0.5𝑌𝑡−6 +⋯+ 𝑌𝑡 +⋯+ 0.5𝑌𝑡+6)/12 if   𝑠 = 12 (monthly)

or
෢𝑇𝐶𝑡 = (0.5𝑌𝑡−2 + 𝑌𝑡−1 + 𝑌𝑡 + 𝑌𝑡+1 + 0.5𝑌𝑡+2)/4 if   𝑠 = 4 (quarterly)

Step 2: Calculate the detrended series:   𝑌𝑡 − ෢𝑇𝐶𝑡

Step 3: Estimate the seasonal components for each month or quarter, averaging the

detrended values for that month or quarter. Then adjust the seasonal indices so that

they add up to zero:

መ𝑆𝑚 = 𝑖𝑚 − (𝑖1+𝑖2 +⋯+ 𝑖12)/12 if   𝑠 = 12 (monthly)

or
መ𝑆𝑞 = 𝑖𝑞 − (𝑖1+𝑖2 + 𝑖3 + 𝑖4)/4 if   𝑠 = 4 (quarterly)
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Step 4: The seasonally adjusted series is obtained by subtracting 𝑌𝑡 by the seasonal

factors 𝑆𝑗. This gives 𝑌𝑡
𝑆𝐴.

Step 5: The remainder component is calculated by subtracting the estimated seasonal

and trend-cycle components: ෠𝐸𝑡 = 𝑌𝑡 − ෢𝑇𝐶𝑡 − መ𝑆𝑡

Other seasonal adjustment procedures: X12 ARIMA, STL and TRAMO/SEATS
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Example: The data below

represent the monthly sales of

houses in Ohio (US) from

January 1987 to November

July 1994 (EViews file: data-

forecasting.wk1; page=house)

Plot the time series. Are

there any seasonal

fluctuations? Use additive

decomposition to estimate

the trend-cycle, seasonal

indices and error component.

Date Sales Date Sales Date Sales Date Sales 

1987M01 53 1989M01 52 1991M01 30 1993M01 44 

1987M02 59 1989M02 51 1991M02 40 1993M02 50 

1987M03 73 1989M03 58 1991M03 46 1993M03 60 

1987M04 72 1989M04 60 1991M04 46 1993M04 66 

1987M05 62 1989M05 61 1991M05 47 1993M05 58 

1987M06 58 1989M06 58 1991M06 47 1993M06 59 

1987M07 55 1989M07 62 1991M07 43 1993M07 55 

1987M08 56 1989M08 61 1991M08 46 1993M08 57 

1987M09 52 1989M09 49 1991M09 37 1993M09 57 

1987M10 52 1989M10 51 1991M10 41 1993M10 56 

1987M11 43 1989M11 47 1991M11 39 1993M11 53 

1987M12 37 1989M12 40 1991M12 36 1993M12 51 

1988M01 43 1990M01 45 1992M01 48 1994M01 45 

1988M02 55 1990M02 50 1992M02 55 1994M02 58 

1988M03 68 1990M03 58 1992M03 56 1994M03 74 

1988M04 68 1990M04 52 1992M04 53 1994M04 65 

1988M05 64 1990M05 50 1992M05 52 1994M05 65 

1988M06 65 1990M06 50 1992M06 53 1994M06 55 

1988M07 57 1990M07 46 1992M07 52 1994M07 52 

1988M08 59 1990M08 46 1992M08 56 1994M08 59 

1988M09 54 1990M09 38 1992M09 51 1994M09 54 

1988M10 57 1990M10 37 1992M10 48 1994M10 57 

1988M11 43 1990M11 34 1992M11 42 1994M11 45 

1988M12 42 1990M12 29 1992M12 42 
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Forecast Evaluation

Suppose the forecast sample is 𝑇 + 1, 𝑇 + 2,… , 𝑇 + 𝑘 and denote the actual value in

period 𝑡 as 𝑌𝑡 and the forecasted value as ෠𝑌𝑡.

The three most commonly used forecast accuracy measures are:

𝑅𝑀𝑆𝐸 = (1/𝑘)σ𝑡=𝑇+1
𝑇+𝑘 (𝑌𝑡 − ෠𝑌𝑡)

2 (Root Mean Squared Error)

𝑀𝐴𝐸 = 1/𝑘)σ𝑡=𝑇+1
𝑇+𝑘 𝑌𝑡 − ෠𝑌𝑡 (Mean Absolute Error)

𝑀𝐴𝑃𝐸 = 1/𝑘)σ𝑡=𝑇+1
𝑇+𝑘 𝑌𝑡−෠𝑌𝑡

𝑌𝑡
× 100 (Mean Absolute Percentual Error)
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Exponential Smoothing

Exponential smoothing methods compute forecasts as weighted averages of past

observations, with the weights decaying exponentially as the observation get older.

Single smoothing

The single exponential method is appropriate for forecasting series with no trend or

seasonal pattern.

Forecast at time 𝑡 + 1: ෠𝑌𝑡+1 = 𝛼𝑌𝑡 + (1 − 𝛼) ෠𝑌𝑡 , where 0 ≤ 𝛼 ≤ 1 is the damping or

smoothing parameter.

By repeated substitutions, we obtain

෠𝑌𝑡+1 = ෍

𝑗=0

𝑇−1

𝛼(1 − 𝛼)𝑗𝑌𝑡−𝑗

The forecast equation of single exponential method is given by:

෠𝑌𝑇+𝑘 = ෠𝑌𝑇 for all 𝑘 > 0
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Initialization: We may use ෠𝑌2 = 𝑌1 or the mean of the initial observations of 𝑌𝑡. EViews

uses the mean of the initial (𝑇 + 1)/2 observations of 𝑌𝑡 to start the recursion.

Example: The figure below is a plot of the population in Portugal from 1966 to 1998

(Source: INE) .
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Date: 08/02/18   Time: 21:44     
Sample: 1966 1998     
Included observations: 33     
Method: Single Exponential     
Original Series: POPUL     
Forecast Series: POPULSM     
     
Parameters: Alpha   0.9990 
Sum of Squared Residuals    0.790758 
Root Mean Squared Error    0.154798 
     
End of Period Levels:  Mean  9.969970 

 

Date: 08/02/18   Time: 21:46     
Sample: 1966 1998     
Included observations: 33     
Method: Single Exponential     
Original Series: POPUL     
Forecast Series: POPULSM1     
     
Parameters: Alpha   0.1000 
Sum of Squared Residuals    3.902201 
Root Mean Squared Error    0.343873 
     
End of Period Levels:  Mean  9.838343 

Optimal 
RMSE=0.155

=0.1
RMSE = 0.344
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Double Smoothing

It is appropriate for series with a linear trend

The double smoothing method involves the following recursion equations:

𝑆𝑡 = 𝛼𝑌𝑡 + 1− 𝛼 𝑆𝑡−1
𝐷𝑡 = 𝛼𝑆𝑡 + 1 − 𝛼 𝐷𝑡−1

where 𝑆𝑡 is the single smoothed series, 𝐷𝑡 is the double smoothed series, and 0 ≤ 𝛼 ≤
1 is the smoothing parameter. Forecasts are computed as:

෠𝑌𝑇+𝑘 = 𝑎𝑇 + 𝑘𝑏𝑇

where 𝑎𝑇 = 2𝑆𝑡 − 𝐷𝑡 and 𝑏𝑇 = (𝑆𝑡−𝐷𝑡)𝛼/(1 − 𝛼).

Initialization: 𝑏1 = σ𝑡=𝑚+1
2𝑚 𝑌𝑡 −σ𝑡=1

𝑚 𝑌𝑡 /𝑚
2 (where 𝑚 is an arbitrary number of

observations) and 𝑎1 = σ𝑡=1
𝑚 𝑌𝑡 /𝑚 − 𝑏1 × (𝑚 + 1)/2.

Optimization: We choose the smoothing parameter 𝛼 by minimizing the sum of

squares of one-step-ahead forecast errors.
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Example: To illustrate the application of double smoothing method, we forecast data on

interest rate in Portugal from 2000q1 to 2017q3.

Sample: 2000Q1 2017Q3

Included observations: 71

Method: Double Exponential

Original Series: INTEREST

Forecast Series: INTERESM

Parameters: Alpha 0.9990

Sum of Squared Residuals 481412.8

Root Mean Squared Error 82.34356

End of Period Levels: Mean 7548.200

Trend -56.83361
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Holt’s Linear Trend

Holt (1957) extended simple exponential method to allow forecasting of data with a

linear time trend (and no seasonal variation).

𝑎𝑡 = 𝛼𝑌𝑡 + 1− 𝛼 (𝑎𝑡−1 + 𝑏𝑡−1)
𝑏𝑡 = 𝛽(𝑎𝑡 − 𝑎𝑡−1) + 1 − 𝛽 𝑏𝑡−1

෠𝑌𝑡+𝑘 = 𝑎𝑡 + 𝑘𝑏𝑡

where 𝑎𝑡 denotes the level of the series at time t; 𝑏𝑡 denotes the trend (or slope) of the

series at time t; 0 ≤ 𝛼 ≤ 1 and 0 ≤ 𝛽 ≤ 1 are the smoothing parameters.

Initialization: 𝑏1 = σ𝑡=𝑚+1
2𝑚 𝑌𝑡 −σ𝑡=1

𝑚 𝑌𝑡 /𝑚
2 (where 𝑚 is an arbitrary number of

observations) and 𝑎1 = σ𝑡=1
𝑚 𝑌𝑡 /𝑚 − 𝑏1 × (𝑚 + 1)/2.

Optimization: We choose the smoothing parameter 𝛼 by minimizing the sum of squares

of one-step-ahead forecast errors.
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Example: To illustrate the application of Holt’s linear trend method, we forecast again

data on interest rate in Portugal from 2000q1 to 2017q3.

Sample: 2000Q1 2017Q3

Included observations: 71

Method: Holt-Winters No Seasonal

Original Series: INTEREST

Forecast Series: INTEREST_HOLT

Parameters: Alpha 1.0000

Beta 1.0000

Sum of Squared Residuals 466952.1

Root Mean Squared Error 81.09741

End of Period Levels: Mean 7548.200

Trend -56.80000
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Holt-Winters additive method

This method is appropriate for series with a linear time trend and additive seasonal variation.

𝑎𝑡 = 𝛼(𝑌𝑡−𝑆𝑡−𝑠) + 1 − 𝛼 (𝑎𝑡−1 + 𝑏𝑡−1)
𝑏𝑡 = 𝛽(𝑎𝑡 − 𝑎𝑡−1) + 1 − 𝛽 𝑏𝑡−1

𝑆𝑡 = 𝛾(𝑌𝑡 − 𝑎𝑡) + 1 − 𝛾 𝑆𝑡−𝑠

෠𝑌𝑡+𝑘 = 𝑎𝑡 + 𝑘𝑏𝑡 + 𝑆𝑡+𝑘−𝑠

where 𝑎𝑡 denotes the level of the series at time t; 𝑏𝑡 denotes of the trend (or slope) of the

series at time t; 𝑆𝑡 denotes the seasonal factor of the series, and 𝑠 denotes the number of

seasons in a year; 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1 and 0 ≤ 𝛾 ≤ 1 are the smoothing parameters.

Initialization: A common approach is to set 

𝑏𝑠 = σ𝑡=𝑠+1
2𝑠 𝑌𝑡 −σ𝑡=1

𝑠 𝑌𝑡 /𝑠
2, 𝑎𝑠 = σ𝑡=1

𝑠 𝑌𝑡 /𝑠 and 𝑆𝑖 = 𝑌𝑖 − 𝑎𝑠 , 𝑖 = 1,2,… , 𝑠

Optimization: We choose the smoothing parameters (𝛼, 𝛽 and 𝛾) by minimizing the sum of 

squares of one-step-ahead forecast errors.    
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Example: We employ the Holt-Winters with additive seasonality to forecast wine

consumption in Australia for the period 1980m1 to 1995m7.
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Date: 10/25/18   Time: 22:17

Sample: 1980M01 1995M07

Included observations: 187

Method: Holt-Winters Additive Seasonal

Original Series: WINE

Forecast Series: WINESM

Parameters: Alpha 0.1200

Beta 0.0000

Gamma 0.4001

Sum of Squared Residuals 8078709.

Root Mean Squared Error 207.8501

End of Period Levels: Mean 2637.784

Trend 8.530258

Seasonals: 1994M08 455.5493

1994M09 55.46994

1994M10 -164.2915

1994M11 141.5148

1994M12 285.5265

1995M01 -1095.073

1995M02 -622.1864

1995M03 -128.7721

1995M04 -24.76443

1995M05 -38.46030

1995M06 187.3407

1995M07 948.1462
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Holt-Winters multiplicative method

This method is appropriate for series with a linear time trend and multiplicative seasonal

variation.

𝑎𝑡 = 𝛼(𝑌𝑡/𝑆𝑡−𝑠) + 1 − 𝛼 (𝑎𝑡−1 + 𝑏𝑡−1)
𝑏𝑡 = 𝛽(𝑎𝑡 − 𝑎𝑡−1) + 1 − 𝛽 𝑏𝑡−1

𝑆𝑡 = 𝛾(𝑌𝑡/𝑎𝑡) + 1 − 𝛾 𝑆𝑡−𝑠

෠𝑌𝑡+𝑘 = (𝑎𝑡+𝑘𝑏𝑡)𝑆𝑡+𝑘−𝑠

where 𝑎𝑡 denotes the level of the series at time t; 𝑏𝑡 denotes of the trend (or slope) of the

series at time t; 𝑆𝑡 denotes the seasonal factor of the series, and 𝑠 denotes the number of

seasons in a year; 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1 and 0 ≤ 𝛾 ≤ 1 are the smoothing parameters.

Initialization: A common approach is to set 

𝑏𝑠 = σ𝑡=𝑠+1
2𝑠 𝑌𝑡 −σ𝑡=1

𝑠 𝑌𝑡 /𝑠
2, 𝑎𝑠 = σ𝑡=1

𝑠 𝑌𝑡 /𝑠 and 𝑆𝑖 = 𝑌𝑖/𝑎𝑠 , 𝑖 = 1,2,… , 𝑠

Optimization: We choose the smoothing parameters (𝛼, 𝛽 and 𝛾) by minimizing the sum of 

squares of one-step-ahead forecast errors.    
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Example: EViews file data-forecasting.wk1 contains the monthly air passengers in

the US (page: passengers) for the period 1949m1 to 1960m12.

a) Plot the series and describe the main features of the series

b) Forecast the next two years using Holt-Winters multiplicative method.

c) Forecast the next two years using Holt-Winters additive method.

d) Report and compare the RMSE of the one-step ahead forecasts from the two

approaches.
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Definitions:
A stochastic process is a family of time indexed random variables, Z(w,t):
t=0,1, 2, …, where w is the sample space and t is the index set.
A time series is a realization (or sample function) from a certain stochastic
process, Yt, t=1,2,…,n.

A process Yt, t=1,2,…,n is said to be weakly stationary if it has constant mean,
constant variance, and the covariance and the correlation between Yt and
Yt+k depend only on time difference k.

Linear Time Series Models
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The autocovariance function (ACOVF) and autocorrelation function (ACF)
represent the covariance and correlation between Yt and Yt+k, from the same
process Y separated only by k time lags.

The autocovariance function and the autocorrelation function have the
following properties:



Partial autocorrelation
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White noise
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Sample ACF and PACF
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Backshift notation
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MA() representation
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AR() representation
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Autoregressive and
moving average models
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Autoregressive and
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General multiplicative
ARMA models
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Unit Root Tests
Statistical tests to determine  the required order of differencing

▪ Augmented Dickey-Fuller (ADF) test (most popular)
Null hypothesis: The data are non-stationary and non-seasonal (=0)
Y(t) = Y(t-1) + b1 Y(t-1)+  + Y(t-p)

▪ Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test
Null hypothesis: The data are stationary and non-seasonal

▪ Other tests: Phillipis-Perron (PP) test; Seasonal tests
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Example: 1-Year US Treasury Bill: Secondary Market Rate
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Example: 1-Year US Treasury Bill: Secondary Market Rate
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Example: 1-Year US Treasury Bill - ARIMA(0,1,2) model
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Log TB1YR
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Example: 1-Year US Treasury Bill - ARIMA(0,1,2) model

-.3

-.2

-.1

.0

.1

.2

.3

-.4

-.2

.0

.2

.4

1960 1965 1970 1975 1980 1985 1990 1995 2000

Residual Actual Fitted

MA(1) MA(2)

MA(1)  0.006167  0.002640

MA(2)  0.002640  0.006165

Coefficient covariance matrix
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Example: 1-Year US Treasury Bill

ARIMA(0,1,2) model

0

4

8

12

16

20

24

-0.3 -0.2 -0.1 0.0 0.1 0.2

Series: Residuals
Sample 1959Q4 2001Q1
Observations 166

Mean      -0.000345
Median   0.004791
Maximum  0.249859
Minimum -0.282943
Std. Dev.   0.095951
Skewness  -0.229303
Kurtosis   3.464358

Jarque-Bera  2.946140
Probability  0.229221
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Example: 1-Year US Treasury Bill
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3.5
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6.0

6.5

7.0

7.5

II III IV I II III IV I

1999 2000 2001

TB1YRF

± 2 S.E.

Forecast: TB1YRF

Actual: TB1YR

Forecast sample: 1999Q2 2001Q1

Included observations: 8

Root Mean Squared Error 0.467643

Mean Absolute Error      0.322565

Mean Abs. Percent Error 6.540790

Theil Inequality Coefficient  0.043831

     Bias Proportion         0.007367

     Variance Proportion  0.006927

     Covariance Proportion  0.985705

3.6

4.0

4.4

4.8
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5.6

6.0

6.4

6.8

7.2

II III IV I II III IV I

1999 2000 2001

TB1YRF

± 2 S.E.

Forecast: TB1YRF

Actual: TB1YR

Forecast sample: 1999Q2 2001Q1

Included observations: 8

Root Mean Squared Error 0.476301

Mean Absolute Error      0.315519

Mean Abs. Percent Error 6.439636

Theil Inequality Coefficient  0.044692

     Bias Proportion         0.004036

     Variance Proportion  0.015674

     Covariance Proportion  0.980290

Example: 1-Year US Treasury Bill – Static Forecasting

ARIMA(0,1,2) model

log(TB1YR) series

ARIMA(2,1,0) model

log(TB1YR) series
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Example: 1-Year US Treasury Bill – Dynamic Forecasting

ARIMA(0,1,2) model

log(TB1YR) series

ARIMA(2,1,0) model

log(TB1YR) series
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1999 2000 2001

TB1YRF

± 2 S.E.

Forecast: TB1YRF

Actual: TB1YR

Forecast sample: 1999Q2 2001Q1

Included observations: 8

Root Mean Squared Error 0.883607

Mean Absolute Error      0.740036

Mean Abs. Percent Error 13.18370

Theil Inequality Coefficient  0.089116

     Bias Proportion         0.609898

     Variance Proportion  0.351946

     Covariance Proportion  0.038155
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1999 2000 2001

TB1YRF

± 2 S.E.

Forecast: TB1YRF

Actual: TB1YR

Forecast sample: 1999Q2 2001Q1

Included observations: 8

Root Mean Squared Error 0.861252

Mean Absolute Error      0.717839

Mean Abs. Percent Error 12.78505

Theil Inequality Coefficient  0.086577

     Bias Proportion         0.582794

     Variance Proportion  0.366424

     Covariance Proportion  0.050782
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Example: 1-Year US Treasury Bill

Forecasts for h=1,2,3 and 4 steps ahead and 95% forecast limits

ARIMA(0,1,2) model
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